Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group

Abstract Let L=−ΔHn+V $L=-\Delta_{\mathbb{H}_{n}}+V$ be a Schrödinger operator on the Heisenberg group Hn $\mathbb{H}_{n}$, where the nonnegative potential V belongs to the reverse Hölder class RHq1 $RH_{q_{1}}$ for some q1≥Q/2 $q_{1} \ge Q/2$, and Q is the homogeneous dimension of Hn $\mathbb{H} _{...

Full description

Bibliographic Details
Main Authors: Vagif S. Guliyev, Ali Akbulut, Faiq M. Namazov
Format: Article
Language:English
Published: SpringerOpen 2018-08-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-018-1730-8
id doaj-a56079c5bf994917839ad027eed7b2b5
record_format Article
spelling doaj-a56079c5bf994917839ad027eed7b2b52020-11-25T00:09:22ZengSpringerOpenAdvances in Difference Equations1687-18472018-08-012018111410.1186/s13662-018-1730-8Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg groupVagif S. Guliyev0Ali Akbulut1Faiq M. Namazov2Department of Mathematics, Ahi Evran UniversityDepartment of Mathematics, Ahi Evran UniversityBaku State UniversityAbstract Let L=−ΔHn+V $L=-\Delta_{\mathbb{H}_{n}}+V$ be a Schrödinger operator on the Heisenberg group Hn $\mathbb{H}_{n}$, where the nonnegative potential V belongs to the reverse Hölder class RHq1 $RH_{q_{1}}$ for some q1≥Q/2 $q_{1} \ge Q/2$, and Q is the homogeneous dimension of Hn $\mathbb{H} _{n}$. Let b belong to a new Campanato space Λνθ(ρ) $\Lambda_{\nu }^{ \theta }(\rho )$, and let IβL $\mathcal{I}_{\beta }^{L}$ be the fractional integral operator associated with L. In this paper, we study the boundedness of the commutators [b,IβL] $[b,\mathcal{I}_{\beta }^{L}]$ with b∈Λνθ(ρ) $b \in \Lambda_{\nu }^{\theta }(\rho )$ on central generalized Morrey spaces LMp,φα,V(Hn) $LM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$, generalized Morrey spaces Mp,φα,V(Hn) $M_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$, and vanishing generalized Morrey spaces VMp,φα,V(Hn) $VM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$ associated with Schrödinger operator, respectively. When b belongs to Λνθ(ρ) $\Lambda_{\nu }^{\theta }(\rho )$ with θ>0 $\theta >0$, 0<ν<1 $0<\nu <1$ and (φ1,φ2) $(\varphi_{1},\varphi_{2})$ satisfies some conditions, we show that the commutator operator [b,IβL] $[b,\mathcal{I}_{\beta }^{L}]$ is bounded from LMp,φ1α,V(Hn) $LM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$ to LMq,φ2α,V(Hn) $LM_{q,\varphi _{2}}^{\alpha ,V}(\mathbb{H}_{n})$, from Mp,φ1α,V(Hn) $M_{p,\varphi_{1}}^{\alpha ,V}( \mathbb{H}_{n})$ to Mq,φ2α,V(Hn) $M_{q,\varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$, and from VMp,φ1α,V(Hn) $VM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$ to VMq,φ2α,V(Hn) $VM_{q, \varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$, 1/p−1/q=(β+ν)/Q $1/p-1/q=(\beta +\nu )/Q$.http://link.springer.com/article/10.1186/s13662-018-1730-8Schrödinger operatorHeisenberg groupCentral generalized Morrey spaceCampanato spaceFractional integralCommutator
collection DOAJ
language English
format Article
sources DOAJ
author Vagif S. Guliyev
Ali Akbulut
Faiq M. Namazov
spellingShingle Vagif S. Guliyev
Ali Akbulut
Faiq M. Namazov
Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group
Advances in Difference Equations
Schrödinger operator
Heisenberg group
Central generalized Morrey space
Campanato space
Fractional integral
Commutator
author_facet Vagif S. Guliyev
Ali Akbulut
Faiq M. Namazov
author_sort Vagif S. Guliyev
title Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group
title_short Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group
title_full Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group
title_fullStr Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group
title_full_unstemmed Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group
title_sort morrey-type estimates for commutator of fractional integral associated with schrödinger operators on the heisenberg group
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2018-08-01
description Abstract Let L=−ΔHn+V $L=-\Delta_{\mathbb{H}_{n}}+V$ be a Schrödinger operator on the Heisenberg group Hn $\mathbb{H}_{n}$, where the nonnegative potential V belongs to the reverse Hölder class RHq1 $RH_{q_{1}}$ for some q1≥Q/2 $q_{1} \ge Q/2$, and Q is the homogeneous dimension of Hn $\mathbb{H} _{n}$. Let b belong to a new Campanato space Λνθ(ρ) $\Lambda_{\nu }^{ \theta }(\rho )$, and let IβL $\mathcal{I}_{\beta }^{L}$ be the fractional integral operator associated with L. In this paper, we study the boundedness of the commutators [b,IβL] $[b,\mathcal{I}_{\beta }^{L}]$ with b∈Λνθ(ρ) $b \in \Lambda_{\nu }^{\theta }(\rho )$ on central generalized Morrey spaces LMp,φα,V(Hn) $LM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$, generalized Morrey spaces Mp,φα,V(Hn) $M_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$, and vanishing generalized Morrey spaces VMp,φα,V(Hn) $VM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$ associated with Schrödinger operator, respectively. When b belongs to Λνθ(ρ) $\Lambda_{\nu }^{\theta }(\rho )$ with θ>0 $\theta >0$, 0<ν<1 $0<\nu <1$ and (φ1,φ2) $(\varphi_{1},\varphi_{2})$ satisfies some conditions, we show that the commutator operator [b,IβL] $[b,\mathcal{I}_{\beta }^{L}]$ is bounded from LMp,φ1α,V(Hn) $LM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$ to LMq,φ2α,V(Hn) $LM_{q,\varphi _{2}}^{\alpha ,V}(\mathbb{H}_{n})$, from Mp,φ1α,V(Hn) $M_{p,\varphi_{1}}^{\alpha ,V}( \mathbb{H}_{n})$ to Mq,φ2α,V(Hn) $M_{q,\varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$, and from VMp,φ1α,V(Hn) $VM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$ to VMq,φ2α,V(Hn) $VM_{q, \varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$, 1/p−1/q=(β+ν)/Q $1/p-1/q=(\beta +\nu )/Q$.
topic Schrödinger operator
Heisenberg group
Central generalized Morrey space
Campanato space
Fractional integral
Commutator
url http://link.springer.com/article/10.1186/s13662-018-1730-8
work_keys_str_mv AT vagifsguliyev morreytypeestimatesforcommutatoroffractionalintegralassociatedwithschrodingeroperatorsontheheisenberggroup
AT aliakbulut morreytypeestimatesforcommutatoroffractionalintegralassociatedwithschrodingeroperatorsontheheisenberggroup
AT faiqmnamazov morreytypeestimatesforcommutatoroffractionalintegralassociatedwithschrodingeroperatorsontheheisenberggroup
_version_ 1725412233496756224