Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group
Abstract Let L=−ΔHn+V $L=-\Delta_{\mathbb{H}_{n}}+V$ be a Schrödinger operator on the Heisenberg group Hn $\mathbb{H}_{n}$, where the nonnegative potential V belongs to the reverse Hölder class RHq1 $RH_{q_{1}}$ for some q1≥Q/2 $q_{1} \ge Q/2$, and Q is the homogeneous dimension of Hn $\mathbb{H} _{...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-08-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13662-018-1730-8 |
id |
doaj-a56079c5bf994917839ad027eed7b2b5 |
---|---|
record_format |
Article |
spelling |
doaj-a56079c5bf994917839ad027eed7b2b52020-11-25T00:09:22ZengSpringerOpenAdvances in Difference Equations1687-18472018-08-012018111410.1186/s13662-018-1730-8Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg groupVagif S. Guliyev0Ali Akbulut1Faiq M. Namazov2Department of Mathematics, Ahi Evran UniversityDepartment of Mathematics, Ahi Evran UniversityBaku State UniversityAbstract Let L=−ΔHn+V $L=-\Delta_{\mathbb{H}_{n}}+V$ be a Schrödinger operator on the Heisenberg group Hn $\mathbb{H}_{n}$, where the nonnegative potential V belongs to the reverse Hölder class RHq1 $RH_{q_{1}}$ for some q1≥Q/2 $q_{1} \ge Q/2$, and Q is the homogeneous dimension of Hn $\mathbb{H} _{n}$. Let b belong to a new Campanato space Λνθ(ρ) $\Lambda_{\nu }^{ \theta }(\rho )$, and let IβL $\mathcal{I}_{\beta }^{L}$ be the fractional integral operator associated with L. In this paper, we study the boundedness of the commutators [b,IβL] $[b,\mathcal{I}_{\beta }^{L}]$ with b∈Λνθ(ρ) $b \in \Lambda_{\nu }^{\theta }(\rho )$ on central generalized Morrey spaces LMp,φα,V(Hn) $LM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$, generalized Morrey spaces Mp,φα,V(Hn) $M_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$, and vanishing generalized Morrey spaces VMp,φα,V(Hn) $VM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$ associated with Schrödinger operator, respectively. When b belongs to Λνθ(ρ) $\Lambda_{\nu }^{\theta }(\rho )$ with θ>0 $\theta >0$, 0<ν<1 $0<\nu <1$ and (φ1,φ2) $(\varphi_{1},\varphi_{2})$ satisfies some conditions, we show that the commutator operator [b,IβL] $[b,\mathcal{I}_{\beta }^{L}]$ is bounded from LMp,φ1α,V(Hn) $LM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$ to LMq,φ2α,V(Hn) $LM_{q,\varphi _{2}}^{\alpha ,V}(\mathbb{H}_{n})$, from Mp,φ1α,V(Hn) $M_{p,\varphi_{1}}^{\alpha ,V}( \mathbb{H}_{n})$ to Mq,φ2α,V(Hn) $M_{q,\varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$, and from VMp,φ1α,V(Hn) $VM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$ to VMq,φ2α,V(Hn) $VM_{q, \varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$, 1/p−1/q=(β+ν)/Q $1/p-1/q=(\beta +\nu )/Q$.http://link.springer.com/article/10.1186/s13662-018-1730-8Schrödinger operatorHeisenberg groupCentral generalized Morrey spaceCampanato spaceFractional integralCommutator |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vagif S. Guliyev Ali Akbulut Faiq M. Namazov |
spellingShingle |
Vagif S. Guliyev Ali Akbulut Faiq M. Namazov Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group Advances in Difference Equations Schrödinger operator Heisenberg group Central generalized Morrey space Campanato space Fractional integral Commutator |
author_facet |
Vagif S. Guliyev Ali Akbulut Faiq M. Namazov |
author_sort |
Vagif S. Guliyev |
title |
Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group |
title_short |
Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group |
title_full |
Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group |
title_fullStr |
Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group |
title_full_unstemmed |
Morrey-type estimates for commutator of fractional integral associated with Schrödinger operators on the Heisenberg group |
title_sort |
morrey-type estimates for commutator of fractional integral associated with schrödinger operators on the heisenberg group |
publisher |
SpringerOpen |
series |
Advances in Difference Equations |
issn |
1687-1847 |
publishDate |
2018-08-01 |
description |
Abstract Let L=−ΔHn+V $L=-\Delta_{\mathbb{H}_{n}}+V$ be a Schrödinger operator on the Heisenberg group Hn $\mathbb{H}_{n}$, where the nonnegative potential V belongs to the reverse Hölder class RHq1 $RH_{q_{1}}$ for some q1≥Q/2 $q_{1} \ge Q/2$, and Q is the homogeneous dimension of Hn $\mathbb{H} _{n}$. Let b belong to a new Campanato space Λνθ(ρ) $\Lambda_{\nu }^{ \theta }(\rho )$, and let IβL $\mathcal{I}_{\beta }^{L}$ be the fractional integral operator associated with L. In this paper, we study the boundedness of the commutators [b,IβL] $[b,\mathcal{I}_{\beta }^{L}]$ with b∈Λνθ(ρ) $b \in \Lambda_{\nu }^{\theta }(\rho )$ on central generalized Morrey spaces LMp,φα,V(Hn) $LM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$, generalized Morrey spaces Mp,φα,V(Hn) $M_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$, and vanishing generalized Morrey spaces VMp,φα,V(Hn) $VM_{p,\varphi }^{\alpha ,V}(\mathbb{H}_{n})$ associated with Schrödinger operator, respectively. When b belongs to Λνθ(ρ) $\Lambda_{\nu }^{\theta }(\rho )$ with θ>0 $\theta >0$, 0<ν<1 $0<\nu <1$ and (φ1,φ2) $(\varphi_{1},\varphi_{2})$ satisfies some conditions, we show that the commutator operator [b,IβL] $[b,\mathcal{I}_{\beta }^{L}]$ is bounded from LMp,φ1α,V(Hn) $LM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$ to LMq,φ2α,V(Hn) $LM_{q,\varphi _{2}}^{\alpha ,V}(\mathbb{H}_{n})$, from Mp,φ1α,V(Hn) $M_{p,\varphi_{1}}^{\alpha ,V}( \mathbb{H}_{n})$ to Mq,φ2α,V(Hn) $M_{q,\varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$, and from VMp,φ1α,V(Hn) $VM_{p,\varphi_{1}}^{\alpha ,V}(\mathbb{H}_{n})$ to VMq,φ2α,V(Hn) $VM_{q, \varphi_{2}}^{\alpha ,V}(\mathbb{H}_{n})$, 1/p−1/q=(β+ν)/Q $1/p-1/q=(\beta +\nu )/Q$. |
topic |
Schrödinger operator Heisenberg group Central generalized Morrey space Campanato space Fractional integral Commutator |
url |
http://link.springer.com/article/10.1186/s13662-018-1730-8 |
work_keys_str_mv |
AT vagifsguliyev morreytypeestimatesforcommutatoroffractionalintegralassociatedwithschrodingeroperatorsontheheisenberggroup AT aliakbulut morreytypeestimatesforcommutatoroffractionalintegralassociatedwithschrodingeroperatorsontheheisenberggroup AT faiqmnamazov morreytypeestimatesforcommutatoroffractionalintegralassociatedwithschrodingeroperatorsontheheisenberggroup |
_version_ |
1725412233496756224 |