Accuracy Assessment Measures for Object Extraction from Remote Sensing Images

Object extraction from remote sensing images is critical for a wide range of applications, and object-oriented accuracy assessment plays a vital role in guaranteeing its quality. To evaluate object extraction accuracy, this paper presents several novel accuracy measures that differ from the norm. Fi...

Full description

Bibliographic Details
Main Authors: Liping Cai, Wenzhong Shi, Zelang Miao, Ming Hao
Format: Article
Language:English
Published: MDPI AG 2018-02-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/10/2/303
Description
Summary:Object extraction from remote sensing images is critical for a wide range of applications, and object-oriented accuracy assessment plays a vital role in guaranteeing its quality. To evaluate object extraction accuracy, this paper presents several novel accuracy measures that differ from the norm. First, area-based and object number-based accuracy assessment measures are given based on a confusion matrix. Second, different accuracy assessment measures are provided by combining the similarities of multiple features. Third, to improve the reliability of the object extraction accuracy assessment results, two accuracy assessment measures based on object detail differences are designed. In contrast to existing measures, the presented method synergizes the feature similarity and distance difference, which considerably improves the reliability of object extraction evaluation. Encouraging results on two QuickBird images indicate the potential for further use of the presented algorithm.
ISSN:2072-4292