q-Rung Orthopair Fuzzy Geometric Aggregation Operators Based on Generalized and Group-Generalized Parameters with Application to Water Loss Management

The notions of fuzzy set (FS) and intuitionistic fuzzy set (IFS) make a major contribution to dealing with practical situations in an indeterminate and imprecise framework, but there are some limitations. Pythagorean fuzzy set (PFS) is an extended form of the IFS, in which degree of truthness and de...

Full description

Bibliographic Details
Main Authors: Muhammad Riaz, Ayesha Razzaq, Humaira Kalsoom, Dragan Pamučar, Hafiz  Muhammad Athar Farid, Yu-Ming Chu
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/8/1236
id doaj-a5197c535f6c4116bf67ec62602ec54e
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Muhammad Riaz
Ayesha Razzaq
Humaira Kalsoom
Dragan Pamučar
Hafiz  Muhammad Athar Farid
Yu-Ming Chu
spellingShingle Muhammad Riaz
Ayesha Razzaq
Humaira Kalsoom
Dragan Pamučar
Hafiz  Muhammad Athar Farid
Yu-Ming Chu
q-Rung Orthopair Fuzzy Geometric Aggregation Operators Based on Generalized and Group-Generalized Parameters with Application to Water Loss Management
Symmetry
q-Rung orthopair fuzzy sets
geometric aggregation operators based on generalized and group-generalized parameters
water loss management
decision making
author_facet Muhammad Riaz
Ayesha Razzaq
Humaira Kalsoom
Dragan Pamučar
Hafiz  Muhammad Athar Farid
Yu-Ming Chu
author_sort Muhammad Riaz
title q-Rung Orthopair Fuzzy Geometric Aggregation Operators Based on Generalized and Group-Generalized Parameters with Application to Water Loss Management
title_short q-Rung Orthopair Fuzzy Geometric Aggregation Operators Based on Generalized and Group-Generalized Parameters with Application to Water Loss Management
title_full q-Rung Orthopair Fuzzy Geometric Aggregation Operators Based on Generalized and Group-Generalized Parameters with Application to Water Loss Management
title_fullStr q-Rung Orthopair Fuzzy Geometric Aggregation Operators Based on Generalized and Group-Generalized Parameters with Application to Water Loss Management
title_full_unstemmed q-Rung Orthopair Fuzzy Geometric Aggregation Operators Based on Generalized and Group-Generalized Parameters with Application to Water Loss Management
title_sort q-rung orthopair fuzzy geometric aggregation operators based on generalized and group-generalized parameters with application to water loss management
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-07-01
description The notions of fuzzy set (FS) and intuitionistic fuzzy set (IFS) make a major contribution to dealing with practical situations in an indeterminate and imprecise framework, but there are some limitations. Pythagorean fuzzy set (PFS) is an extended form of the IFS, in which degree of truthness and degree of falsity meet the condition <inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msup><mover accent="true"><mi>Θ</mi><mo>˘</mo></mover><mn>2</mn></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mi mathvariant="fraktur">K</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Another extension of PFS is a <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-rung orthopair fuzzy set (<inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROFS), in which truthness degree and falsity degree meet the condition <inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msup><mover accent="true"><mi>Θ</mi><mo>˘</mo></mover><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mi mathvariant="fraktur">K</mi><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>,</mo><mrow><mo>(</mo><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, so they can characterize the scope of imprecise information in more comprehensive way. <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROFS theory is superior to FS, IFS, and PFS theory with distinguished characteristics. This study develops a few aggregation operators (AOs) for the fusion of <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF information and introduces a new approach to decision-making based on the proposed operators. In the framework of this investigation, the idea of a generalized parameter is integrated into the <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROFS theory and different generalized <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF geometric aggregation operators are presented. Subsequently, the AOs are extended to a “group-based generalized parameter”, with the perception of different specialists/decision makers. We developed <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF geometric aggregation operator under generalized parameter and <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF geometric aggregation operator under group-based generalized parameter. Increased water requirements, in parallel with water scarcity, force water utilities in developing countries to follow complex operating techniques for the distribution of the available amounts of water. Reducing water losses from water supply systems can help to bridge the gap between supply and demand. Finally, a decision-making approach based on the proposed operator is being built to solve the problems under the <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF environment. An illustrative example related to water loss management has been given to show the validity of the developed method. Comparison analysis between the proposed and the existing operators have been performed in term of counter-intuitive cases for showing the liability and dominance of proposed techniques to the existing one is also considered.
topic q-Rung orthopair fuzzy sets
geometric aggregation operators based on generalized and group-generalized parameters
water loss management
decision making
url https://www.mdpi.com/2073-8994/12/8/1236
work_keys_str_mv AT muhammadriaz qrungorthopairfuzzygeometricaggregationoperatorsbasedongeneralizedandgroupgeneralizedparameterswithapplicationtowaterlossmanagement
AT ayesharazzaq qrungorthopairfuzzygeometricaggregationoperatorsbasedongeneralizedandgroupgeneralizedparameterswithapplicationtowaterlossmanagement
AT humairakalsoom qrungorthopairfuzzygeometricaggregationoperatorsbasedongeneralizedandgroupgeneralizedparameterswithapplicationtowaterlossmanagement
AT draganpamucar qrungorthopairfuzzygeometricaggregationoperatorsbasedongeneralizedandgroupgeneralizedparameterswithapplicationtowaterlossmanagement
AT hafizmuhammadatharfarid qrungorthopairfuzzygeometricaggregationoperatorsbasedongeneralizedandgroupgeneralizedparameterswithapplicationtowaterlossmanagement
AT yumingchu qrungorthopairfuzzygeometricaggregationoperatorsbasedongeneralizedandgroupgeneralizedparameterswithapplicationtowaterlossmanagement
_version_ 1724544667313242112
spelling doaj-a5197c535f6c4116bf67ec62602ec54e2020-11-25T03:37:39ZengMDPI AGSymmetry2073-89942020-07-01121236123610.3390/sym12081236q-Rung Orthopair Fuzzy Geometric Aggregation Operators Based on Generalized and Group-Generalized Parameters with Application to Water Loss ManagementMuhammad Riaz0Ayesha Razzaq1Humaira Kalsoom2Dragan Pamučar3Hafiz  Muhammad Athar Farid4Yu-Ming Chu5Department of Mathematics, University of the Punjab, Lahore 54590, PakistanDepartment of Mathematics, University of the Punjab, Lahore 54590, PakistanSchool of Mathematical Sciences, Zhejiang University, Hangzhou 310027, ChinaDepartment of Logistics, University of Defence, 11000 Belgrade, SerbiaDepartment of Mathematics, University of the Punjab, Lahore 54590, PakistanDepartment of Mathematics, Huzhou University, Huzhou 313000, ChinaThe notions of fuzzy set (FS) and intuitionistic fuzzy set (IFS) make a major contribution to dealing with practical situations in an indeterminate and imprecise framework, but there are some limitations. Pythagorean fuzzy set (PFS) is an extended form of the IFS, in which degree of truthness and degree of falsity meet the condition <inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msup><mover accent="true"><mi>Θ</mi><mo>˘</mo></mover><mn>2</mn></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mi mathvariant="fraktur">K</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>. Another extension of PFS is a <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-rung orthopair fuzzy set (<inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROFS), in which truthness degree and falsity degree meet the condition <inline-formula><math display="inline"><semantics><mrow><mn>0</mn><mo>≤</mo><msup><mover accent="true"><mi>Θ</mi><mo>˘</mo></mover><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msup><mi mathvariant="fraktur">K</mi><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≤</mo><mn>1</mn><mo>,</mo><mrow><mo>(</mo><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, so they can characterize the scope of imprecise information in more comprehensive way. <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROFS theory is superior to FS, IFS, and PFS theory with distinguished characteristics. This study develops a few aggregation operators (AOs) for the fusion of <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF information and introduces a new approach to decision-making based on the proposed operators. In the framework of this investigation, the idea of a generalized parameter is integrated into the <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROFS theory and different generalized <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF geometric aggregation operators are presented. Subsequently, the AOs are extended to a “group-based generalized parameter”, with the perception of different specialists/decision makers. We developed <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF geometric aggregation operator under generalized parameter and <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF geometric aggregation operator under group-based generalized parameter. Increased water requirements, in parallel with water scarcity, force water utilities in developing countries to follow complex operating techniques for the distribution of the available amounts of water. Reducing water losses from water supply systems can help to bridge the gap between supply and demand. Finally, a decision-making approach based on the proposed operator is being built to solve the problems under the <inline-formula><math display="inline"><semantics><mover accent="true"><mi mathvariant="fraktur">q</mi><mo>´</mo></mover></semantics></math></inline-formula>-ROF environment. An illustrative example related to water loss management has been given to show the validity of the developed method. Comparison analysis between the proposed and the existing operators have been performed in term of counter-intuitive cases for showing the liability and dominance of proposed techniques to the existing one is also considered.https://www.mdpi.com/2073-8994/12/8/1236q-Rung orthopair fuzzy setsgeometric aggregation operators based on generalized and group-generalized parameterswater loss managementdecision making