Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China

<p>Nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant=&qu...

Full description

Bibliographic Details
Main Authors: H. Yun, W. Wang, T. Wang, M. Xia, C. Yu, Z. Wang, S. C. N. Poon, D. Yue, Y. Zhou
Format: Article
Language:English
Published: Copernicus Publications 2018-12-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/18/17515/2018/acp-18-17515-2018.pdf
id doaj-a5069ae9bcd547babea78c94537d3244
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author H. Yun
W. Wang
T. Wang
M. Xia
C. Yu
C. Yu
Z. Wang
S. C. N. Poon
D. Yue
Y. Zhou
spellingShingle H. Yun
W. Wang
T. Wang
M. Xia
C. Yu
C. Yu
Z. Wang
S. C. N. Poon
D. Yue
Y. Zhou
Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China
Atmospheric Chemistry and Physics
author_facet H. Yun
W. Wang
T. Wang
M. Xia
C. Yu
C. Yu
Z. Wang
S. C. N. Poon
D. Yue
Y. Zhou
author_sort H. Yun
title Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China
title_short Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China
title_full Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China
title_fullStr Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China
title_full_unstemmed Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China
title_sort nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern china
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2018-12-01
description <p>Nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="57a4663cbf0d11bf294d99bb32c9ae29"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00001.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00001.png"/></svg:svg></span></span>) has become a major component of fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) during hazy days in China. However, the role of the heterogeneous reactions of dinitrogen pentoxide (<span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span>) in nitrate formation is not well constrained. In January 2017, a severe haze event occurred in the Pearl River Delta (PRD) of southern China during which high levels of PM<span class="inline-formula"><sub>2.5</sub></span> (<span class="inline-formula">∼400</span>&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span>) and <span class="inline-formula">O<sub>3</sub></span> (<span class="inline-formula">∼160</span>&thinsp;ppbv) were observed at a semi-rural site (Heshan) in the western PRD. Nitrate concentrations reached 108&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span> (1&thinsp;h time resolution), and the contribution of nitrate to PM<span class="inline-formula"><sub>2.5</sub></span> was nearly 40&thinsp;%. Concurrent increases in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9712381780fcc4de6c4d72f703a8771c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00002.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00002.png"/></svg:svg></span></span> and <span class="inline-formula">ClNO<sub>2</sub></span> (with a maximum value of 8.3&thinsp;ppbv at a 1&thinsp;min time resolution) were observed in the first several hours after sunset, indicating an intense <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous uptake by aerosols. The formation potential of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00003.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00003.png"/></svg:svg></span></span> via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous reactions was estimated to be between 29.0 and 77.3&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span> in the early hours (2 to 6&thinsp;h) after sunset based on the measurement data, which could completely explain the measured increase in the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="827b0fe0e97f70953101fc9e20cd0031"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00004.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00004.png"/></svg:svg></span></span> concentration during the same time period. Daytime production of nitric acid from the gas-phase reaction of <span class="inline-formula">OH+NO<sub>2</sub></span> was calculated with a chemical box model built using the Master Chemical Mechanism (MCM v3.3.1) and constrained by the measurement data. The integrated nocturnal nitrate formed via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> chemistry was comparable to or even higher than the nitric acid formed during the day. This study confirms that <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous chemistry was a significant source of aerosol nitrate during hazy days in southern China.</p>
url https://www.atmos-chem-phys.net/18/17515/2018/acp-18-17515-2018.pdf
work_keys_str_mv AT hyun nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
AT wwang nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
AT twang nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
AT mxia nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
AT cyu nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
AT cyu nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
AT zwang nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
AT scnpoon nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
AT dyue nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
AT yzhou nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina
_version_ 1725266728331509760
spelling doaj-a5069ae9bcd547babea78c94537d32442020-11-25T00:46:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-12-0118175151752710.5194/acp-18-17515-2018Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern ChinaH. Yun0W. Wang1T. Wang2M. Xia3C. Yu4C. Yu5Z. Wang6S. C. N. Poon7D. Yue8Y. Zhou9Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaEnvironment Research Institute, Shandong University, Jinan, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaGuangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, ChinaGuangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, China<p>Nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="57a4663cbf0d11bf294d99bb32c9ae29"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00001.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00001.png"/></svg:svg></span></span>) has become a major component of fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) during hazy days in China. However, the role of the heterogeneous reactions of dinitrogen pentoxide (<span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span>) in nitrate formation is not well constrained. In January 2017, a severe haze event occurred in the Pearl River Delta (PRD) of southern China during which high levels of PM<span class="inline-formula"><sub>2.5</sub></span> (<span class="inline-formula">∼400</span>&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span>) and <span class="inline-formula">O<sub>3</sub></span> (<span class="inline-formula">∼160</span>&thinsp;ppbv) were observed at a semi-rural site (Heshan) in the western PRD. Nitrate concentrations reached 108&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span> (1&thinsp;h time resolution), and the contribution of nitrate to PM<span class="inline-formula"><sub>2.5</sub></span> was nearly 40&thinsp;%. Concurrent increases in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9712381780fcc4de6c4d72f703a8771c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00002.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00002.png"/></svg:svg></span></span> and <span class="inline-formula">ClNO<sub>2</sub></span> (with a maximum value of 8.3&thinsp;ppbv at a 1&thinsp;min time resolution) were observed in the first several hours after sunset, indicating an intense <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous uptake by aerosols. The formation potential of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00003.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00003.png"/></svg:svg></span></span> via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous reactions was estimated to be between 29.0 and 77.3&thinsp;<span class="inline-formula">µ</span>g&thinsp;m<span class="inline-formula"><sup>−3</sup></span> in the early hours (2 to 6&thinsp;h) after sunset based on the measurement data, which could completely explain the measured increase in the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="827b0fe0e97f70953101fc9e20cd0031"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00004.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00004.png"/></svg:svg></span></span> concentration during the same time period. Daytime production of nitric acid from the gas-phase reaction of <span class="inline-formula">OH+NO<sub>2</sub></span> was calculated with a chemical box model built using the Master Chemical Mechanism (MCM v3.3.1) and constrained by the measurement data. The integrated nocturnal nitrate formed via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> chemistry was comparable to or even higher than the nitric acid formed during the day. This study confirms that <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous chemistry was a significant source of aerosol nitrate during hazy days in southern China.</p>https://www.atmos-chem-phys.net/18/17515/2018/acp-18-17515-2018.pdf