Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China
<p>Nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant=&qu...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-12-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/18/17515/2018/acp-18-17515-2018.pdf |
id |
doaj-a5069ae9bcd547babea78c94537d3244 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
H. Yun W. Wang T. Wang M. Xia C. Yu C. Yu Z. Wang S. C. N. Poon D. Yue Y. Zhou |
spellingShingle |
H. Yun W. Wang T. Wang M. Xia C. Yu C. Yu Z. Wang S. C. N. Poon D. Yue Y. Zhou Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China Atmospheric Chemistry and Physics |
author_facet |
H. Yun W. Wang T. Wang M. Xia C. Yu C. Yu Z. Wang S. C. N. Poon D. Yue Y. Zhou |
author_sort |
H. Yun |
title |
Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China |
title_short |
Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China |
title_full |
Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China |
title_fullStr |
Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China |
title_full_unstemmed |
Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern China |
title_sort |
nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern china |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2018-12-01 |
description |
<p>Nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="57a4663cbf0d11bf294d99bb32c9ae29"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00001.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00001.png"/></svg:svg></span></span>) has become a major component of fine particulate matter
(PM<span class="inline-formula"><sub>2.5</sub></span>) during hazy days in China. However, the role of the
heterogeneous reactions of dinitrogen pentoxide (<span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span>) in
nitrate formation is not well constrained. In January 2017, a severe haze
event occurred in the Pearl River Delta (PRD) of southern China during which
high levels of PM<span class="inline-formula"><sub>2.5</sub></span> (<span class="inline-formula">∼400</span> <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) and
<span class="inline-formula">O<sub>3</sub></span> (<span class="inline-formula">∼160</span> ppbv) were observed at a semi-rural site (Heshan)
in the western PRD. Nitrate concentrations reached 108 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>
(1 h time resolution), and the contribution of nitrate to PM<span class="inline-formula"><sub>2.5</sub></span> was
nearly 40 %. Concurrent increases in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9712381780fcc4de6c4d72f703a8771c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00002.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00002.png"/></svg:svg></span></span> and
<span class="inline-formula">ClNO<sub>2</sub></span> (with a maximum value of 8.3 ppbv at a 1 min time
resolution) were observed in the first several hours after sunset, indicating
an intense <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous uptake by aerosols.
The formation potential of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00003.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00003.png"/></svg:svg></span></span> via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous reactions was
estimated to be between 29.0 and 77.3 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> in the early
hours (2 to 6 h) after sunset based on the measurement data, which could
completely explain the measured increase in the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="827b0fe0e97f70953101fc9e20cd0031"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00004.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00004.png"/></svg:svg></span></span>
concentration during the same time period. Daytime production of nitric acid
from the gas-phase reaction of <span class="inline-formula">OH+NO<sub>2</sub></span> was calculated
with a chemical box model built using the Master Chemical Mechanism
(MCM v3.3.1) and constrained by the measurement data. The integrated
nocturnal nitrate formed via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> chemistry was comparable to or
even higher than the nitric acid formed during the day. This study confirms
that <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous chemistry was a significant source of
aerosol nitrate during hazy days in southern China.</p> |
url |
https://www.atmos-chem-phys.net/18/17515/2018/acp-18-17515-2018.pdf |
work_keys_str_mv |
AT hyun nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina AT wwang nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina AT twang nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina AT mxia nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina AT cyu nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina AT cyu nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina AT zwang nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina AT scnpoon nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina AT dyue nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina AT yzhou nitrateformationfromheterogeneousuptakeofdinitrogenpentoxideduringaseverewinterhazeinsouthernchina |
_version_ |
1725266728331509760 |
spelling |
doaj-a5069ae9bcd547babea78c94537d32442020-11-25T00:46:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242018-12-0118175151752710.5194/acp-18-17515-2018Nitrate formation from heterogeneous uptake of dinitrogen pentoxide during a severe winter haze in southern ChinaH. Yun0W. Wang1T. Wang2M. Xia3C. Yu4C. Yu5Z. Wang6S. C. N. Poon7D. Yue8Y. Zhou9Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaEnvironment Research Institute, Shandong University, Jinan, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaDepartment of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, ChinaGuangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, ChinaGuangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangzhou, China<p>Nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="57a4663cbf0d11bf294d99bb32c9ae29"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00001.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00001.png"/></svg:svg></span></span>) has become a major component of fine particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) during hazy days in China. However, the role of the heterogeneous reactions of dinitrogen pentoxide (<span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span>) in nitrate formation is not well constrained. In January 2017, a severe haze event occurred in the Pearl River Delta (PRD) of southern China during which high levels of PM<span class="inline-formula"><sub>2.5</sub></span> (<span class="inline-formula">∼400</span> <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span>) and <span class="inline-formula">O<sub>3</sub></span> (<span class="inline-formula">∼160</span> ppbv) were observed at a semi-rural site (Heshan) in the western PRD. Nitrate concentrations reached 108 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> (1 h time resolution), and the contribution of nitrate to PM<span class="inline-formula"><sub>2.5</sub></span> was nearly 40 %. Concurrent increases in <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="9712381780fcc4de6c4d72f703a8771c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00002.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00002.png"/></svg:svg></span></span> and <span class="inline-formula">ClNO<sub>2</sub></span> (with a maximum value of 8.3 ppbv at a 1 min time resolution) were observed in the first several hours after sunset, indicating an intense <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous uptake by aerosols. The formation potential of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="48a6d5724cc017ced9c974ab9a81c03a"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00003.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00003.png"/></svg:svg></span></span> via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous reactions was estimated to be between 29.0 and 77.3 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> in the early hours (2 to 6 h) after sunset based on the measurement data, which could completely explain the measured increase in the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="827b0fe0e97f70953101fc9e20cd0031"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-18-17515-2018-ie00004.svg" width="25pt" height="16pt" src="acp-18-17515-2018-ie00004.png"/></svg:svg></span></span> concentration during the same time period. Daytime production of nitric acid from the gas-phase reaction of <span class="inline-formula">OH+NO<sub>2</sub></span> was calculated with a chemical box model built using the Master Chemical Mechanism (MCM v3.3.1) and constrained by the measurement data. The integrated nocturnal nitrate formed via <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> chemistry was comparable to or even higher than the nitric acid formed during the day. This study confirms that <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> heterogeneous chemistry was a significant source of aerosol nitrate during hazy days in southern China.</p>https://www.atmos-chem-phys.net/18/17515/2018/acp-18-17515-2018.pdf |