Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach
Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover diseas...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
PAGEPress Publications
2017-11-01
|
Series: | Geospatial Health |
Subjects: | |
Online Access: | http://geospatialhealth.net/index.php/gh/article/view/567 |
id |
doaj-a4e34bf6421946628317f4d1c621ab4a |
---|---|
record_format |
Article |
spelling |
doaj-a4e34bf6421946628317f4d1c621ab4a2020-11-25T03:53:22ZengPAGEPress PublicationsGeospatial Health1827-19871970-70962017-11-0112210.4081/gh.2017.567429Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approachSami Ullah0Hanita Daud1Sarat C. Dass2Habib Nawaz Khan3Alamgir Khalil4Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri IskandarDepartment of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri IskandarDepartment of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri IskandarDepartment of Economics and Management Sciences, University of Science and Technology, BannuDepartment of Statistics, University of PeshawarAbility to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space–time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.http://geospatialhealth.net/index.php/gh/article/view/567Space-time disease clustersCo-clustering algorithmLikelihood ratioPakistan |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sami Ullah Hanita Daud Sarat C. Dass Habib Nawaz Khan Alamgir Khalil |
spellingShingle |
Sami Ullah Hanita Daud Sarat C. Dass Habib Nawaz Khan Alamgir Khalil Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach Geospatial Health Space-time disease clusters Co-clustering algorithm Likelihood ratio Pakistan |
author_facet |
Sami Ullah Hanita Daud Sarat C. Dass Habib Nawaz Khan Alamgir Khalil |
author_sort |
Sami Ullah |
title |
Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach |
title_short |
Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach |
title_full |
Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach |
title_fullStr |
Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach |
title_full_unstemmed |
Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach |
title_sort |
detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach |
publisher |
PAGEPress Publications |
series |
Geospatial Health |
issn |
1827-1987 1970-7096 |
publishDate |
2017-11-01 |
description |
Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square) scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space–time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend. |
topic |
Space-time disease clusters Co-clustering algorithm Likelihood ratio Pakistan |
url |
http://geospatialhealth.net/index.php/gh/article/view/567 |
work_keys_str_mv |
AT samiullah detectingspacetimediseaseclusterswitharbitraryshapesandsizesusingacoclusteringapproach AT hanitadaud detectingspacetimediseaseclusterswitharbitraryshapesandsizesusingacoclusteringapproach AT saratcdass detectingspacetimediseaseclusterswitharbitraryshapesandsizesusingacoclusteringapproach AT habibnawazkhan detectingspacetimediseaseclusterswitharbitraryshapesandsizesusingacoclusteringapproach AT alamgirkhalil detectingspacetimediseaseclusterswitharbitraryshapesandsizesusingacoclusteringapproach |
_version_ |
1724478466592604160 |