Coincidence Point Theorems for (α,β,γ)-Contraction Mappings in Generalized Metric Spaces
The result of our study is that a coincidence point of two mappings P and Q can be achieved when the ordered pair (P,Q) is an (α,β,γ)-contraction with respect to a generalized metric space. Moreover, with some additional condition, a common fixed point can be obtained as a consequence of our main th...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Online Access: | http://dx.doi.org/10.1155/2018/4053478 |
Summary: | The result of our study is that a coincidence point of two mappings P and Q can be achieved when the ordered pair (P,Q) is an (α,β,γ)-contraction with respect to a generalized metric space. Moreover, with some additional condition, a common fixed point can be obtained as a consequence of our main theorems. Further, we apply our findings to some examples and integral equation problems. |
---|---|
ISSN: | 0161-1712 1687-0425 |