Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model
As an indispensable ecological parameter, surface soil moisture (SSM) is of great significance for understanding the growth status of vegetation. The cooperative use of synthetic aperture radar (SAR) and optical data has the advantage of considering both vegetation and underlying soil scattering inf...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-06-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/12/11/1844 |
id |
doaj-a4b60bebaf474513afbb0398d19c3222 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Li Zhang Xiaolei Lv Qi Chen Guangcai Sun Jingchuan Yao |
spellingShingle |
Li Zhang Xiaolei Lv Qi Chen Guangcai Sun Jingchuan Yao Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model Remote Sensing surface soil moisture TerraSAR-X Landsat combined scattering model artificial neural network corn |
author_facet |
Li Zhang Xiaolei Lv Qi Chen Guangcai Sun Jingchuan Yao |
author_sort |
Li Zhang |
title |
Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model |
title_short |
Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model |
title_full |
Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model |
title_fullStr |
Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model |
title_full_unstemmed |
Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model |
title_sort |
estimation of surface soil moisture during corn growth stage from sar and optical data using a combined scattering model |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2020-06-01 |
description |
As an indispensable ecological parameter, surface soil moisture (SSM) is of great significance for understanding the growth status of vegetation. The cooperative use of synthetic aperture radar (SAR) and optical data has the advantage of considering both vegetation and underlying soil scattering information, which is suitable for SSM monitoring of vegetation areas. The main purpose of this paper is to establish an inversion approach using Terra-SAR and Landsat-7 data to estimate SSM at three different stages of corn growth in the irrigated area. A combined scattering model that can adequately represent the scattering characteristics of the vegetation coverage area is proposed by modifying the water cloud model (WCM) to reduce the effect of vegetation on the total SAR backscattering. The backscattering from the underlying soil is expressed by an empirical model with good performance in X-band. The modified water cloud model (MWCM) as a function of normalized differential vegetation index (NDVI) considers the contribution of vegetation to the backscattering signal. An inversion technique based on artificial neural network (ANN) is used to invert the combined scattering model for SSM estimation. The inversion method is established and verified using datasets of three different growth stages of corn. Using the proposed method, we estimate the SSM with a correlation coefficient <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>72</mn> </mrow> </semantics> </math> </inline-formula> and root-mean-square error <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mspace width="3.33333pt"></mspace> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.043 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the emergence stage, with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>87</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.046 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the trefoil stage and with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>70</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.064 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the jointing stage. The results suggest that the method proposed in this paper has operational potential in estimating SSM from Terra-SAR and Landsat-7 data at different stages of early corn growth. |
topic |
surface soil moisture TerraSAR-X Landsat combined scattering model artificial neural network corn |
url |
https://www.mdpi.com/2072-4292/12/11/1844 |
work_keys_str_mv |
AT lizhang estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel AT xiaoleilv estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel AT qichen estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel AT guangcaisun estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel AT jingchuanyao estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel |
_version_ |
1724745626317488128 |
spelling |
doaj-a4b60bebaf474513afbb0398d19c32222020-11-25T02:48:58ZengMDPI AGRemote Sensing2072-42922020-06-01121844184410.3390/rs12111844Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering ModelLi Zhang0Xiaolei Lv1Qi Chen2Guangcai Sun3Jingchuan Yao4Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, ChinaKey Laboratory of Technology in Geo-spatial Information Processing and Application System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, ChinaChina Centre for Resources Satellite Data and Application, Beijing 100094, ChinaNational Lab of Radar Signal Processing, Xidian University, Xi’an 710071, ChinaThe State Key Laboratory of High Speed Railway Track Technology, China Academy of Railway Sciences, Beijing 100891, ChinaAs an indispensable ecological parameter, surface soil moisture (SSM) is of great significance for understanding the growth status of vegetation. The cooperative use of synthetic aperture radar (SAR) and optical data has the advantage of considering both vegetation and underlying soil scattering information, which is suitable for SSM monitoring of vegetation areas. The main purpose of this paper is to establish an inversion approach using Terra-SAR and Landsat-7 data to estimate SSM at three different stages of corn growth in the irrigated area. A combined scattering model that can adequately represent the scattering characteristics of the vegetation coverage area is proposed by modifying the water cloud model (WCM) to reduce the effect of vegetation on the total SAR backscattering. The backscattering from the underlying soil is expressed by an empirical model with good performance in X-band. The modified water cloud model (MWCM) as a function of normalized differential vegetation index (NDVI) considers the contribution of vegetation to the backscattering signal. An inversion technique based on artificial neural network (ANN) is used to invert the combined scattering model for SSM estimation. The inversion method is established and verified using datasets of three different growth stages of corn. Using the proposed method, we estimate the SSM with a correlation coefficient <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>72</mn> </mrow> </semantics> </math> </inline-formula> and root-mean-square error <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mspace width="3.33333pt"></mspace> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.043 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the emergence stage, with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>87</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.046 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the trefoil stage and with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>70</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.064 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the jointing stage. The results suggest that the method proposed in this paper has operational potential in estimating SSM from Terra-SAR and Landsat-7 data at different stages of early corn growth.https://www.mdpi.com/2072-4292/12/11/1844surface soil moistureTerraSAR-XLandsatcombined scattering modelartificial neural networkcorn |