Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model

As an indispensable ecological parameter, surface soil moisture (SSM) is of great significance for understanding the growth status of vegetation. The cooperative use of synthetic aperture radar (SAR) and optical data has the advantage of considering both vegetation and underlying soil scattering inf...

Full description

Bibliographic Details
Main Authors: Li Zhang, Xiaolei Lv, Qi Chen, Guangcai Sun, Jingchuan Yao
Format: Article
Language:English
Published: MDPI AG 2020-06-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/12/11/1844
id doaj-a4b60bebaf474513afbb0398d19c3222
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Li Zhang
Xiaolei Lv
Qi Chen
Guangcai Sun
Jingchuan Yao
spellingShingle Li Zhang
Xiaolei Lv
Qi Chen
Guangcai Sun
Jingchuan Yao
Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model
Remote Sensing
surface soil moisture
TerraSAR-X
Landsat
combined scattering model
artificial neural network
corn
author_facet Li Zhang
Xiaolei Lv
Qi Chen
Guangcai Sun
Jingchuan Yao
author_sort Li Zhang
title Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model
title_short Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model
title_full Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model
title_fullStr Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model
title_full_unstemmed Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model
title_sort estimation of surface soil moisture during corn growth stage from sar and optical data using a combined scattering model
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2020-06-01
description As an indispensable ecological parameter, surface soil moisture (SSM) is of great significance for understanding the growth status of vegetation. The cooperative use of synthetic aperture radar (SAR) and optical data has the advantage of considering both vegetation and underlying soil scattering information, which is suitable for SSM monitoring of vegetation areas. The main purpose of this paper is to establish an inversion approach using Terra-SAR and Landsat-7 data to estimate SSM at three different stages of corn growth in the irrigated area. A combined scattering model that can adequately represent the scattering characteristics of the vegetation coverage area is proposed by modifying the water cloud model (WCM) to reduce the effect of vegetation on the total SAR backscattering. The backscattering from the underlying soil is expressed by an empirical model with good performance in X-band. The modified water cloud model (MWCM) as a function of normalized differential vegetation index (NDVI) considers the contribution of vegetation to the backscattering signal. An inversion technique based on artificial neural network (ANN) is used to invert the combined scattering model for SSM estimation. The inversion method is established and verified using datasets of three different growth stages of corn. Using the proposed method, we estimate the SSM with a correlation coefficient <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>72</mn> </mrow> </semantics> </math> </inline-formula> and root-mean-square error <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mspace width="3.33333pt"></mspace> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.043 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the emergence stage, with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>87</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.046 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the trefoil stage and with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>70</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.064 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the jointing stage. The results suggest that the method proposed in this paper has operational potential in estimating SSM from Terra-SAR and Landsat-7 data at different stages of early corn growth.
topic surface soil moisture
TerraSAR-X
Landsat
combined scattering model
artificial neural network
corn
url https://www.mdpi.com/2072-4292/12/11/1844
work_keys_str_mv AT lizhang estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel
AT xiaoleilv estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel
AT qichen estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel
AT guangcaisun estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel
AT jingchuanyao estimationofsurfacesoilmoistureduringcorngrowthstagefromsarandopticaldatausingacombinedscatteringmodel
_version_ 1724745626317488128
spelling doaj-a4b60bebaf474513afbb0398d19c32222020-11-25T02:48:58ZengMDPI AGRemote Sensing2072-42922020-06-01121844184410.3390/rs12111844Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering ModelLi Zhang0Xiaolei Lv1Qi Chen2Guangcai Sun3Jingchuan Yao4Key Laboratory of Technology in Geo-spatial Information Processing and Application System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, ChinaKey Laboratory of Technology in Geo-spatial Information Processing and Application System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, ChinaChina Centre for Resources Satellite Data and Application, Beijing 100094, ChinaNational Lab of Radar Signal Processing, Xidian University, Xi’an 710071, ChinaThe State Key Laboratory of High Speed Railway Track Technology, China Academy of Railway Sciences, Beijing 100891, ChinaAs an indispensable ecological parameter, surface soil moisture (SSM) is of great significance for understanding the growth status of vegetation. The cooperative use of synthetic aperture radar (SAR) and optical data has the advantage of considering both vegetation and underlying soil scattering information, which is suitable for SSM monitoring of vegetation areas. The main purpose of this paper is to establish an inversion approach using Terra-SAR and Landsat-7 data to estimate SSM at three different stages of corn growth in the irrigated area. A combined scattering model that can adequately represent the scattering characteristics of the vegetation coverage area is proposed by modifying the water cloud model (WCM) to reduce the effect of vegetation on the total SAR backscattering. The backscattering from the underlying soil is expressed by an empirical model with good performance in X-band. The modified water cloud model (MWCM) as a function of normalized differential vegetation index (NDVI) considers the contribution of vegetation to the backscattering signal. An inversion technique based on artificial neural network (ANN) is used to invert the combined scattering model for SSM estimation. The inversion method is established and verified using datasets of three different growth stages of corn. Using the proposed method, we estimate the SSM with a correlation coefficient <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>72</mn> </mrow> </semantics> </math> </inline-formula> and root-mean-square error <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mspace width="3.33333pt"></mspace> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.043 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the emergence stage, with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>87</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.046 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the trefoil stage and with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mo>≥</mo> <mn>0</mn> <mo>.</mo> <mn>70</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mo>≤</mo> </mrow> </semantics> </math> </inline-formula> 0.064 cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula>/cm<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>3</mn> </msup> </semantics> </math> </inline-formula> at the jointing stage. The results suggest that the method proposed in this paper has operational potential in estimating SSM from Terra-SAR and Landsat-7 data at different stages of early corn growth.https://www.mdpi.com/2072-4292/12/11/1844surface soil moistureTerraSAR-XLandsatcombined scattering modelartificial neural networkcorn