Evaluation of leaf-level optical properties employed in land surface models

<p>Vegetation optical properties have a direct impact on canopy absorption and scattering and are thus needed for modeling surface fluxes. Although plant functional type (PFT) classification varies between different land surface models (LSMs), their optical properties must be specified. The ai...

Full description

Bibliographic Details
Main Authors: T. Majasalmi, R. M. Bright
Format: Article
Language:English
Published: Copernicus Publications 2019-09-01
Series:Geoscientific Model Development
Online Access:https://www.geosci-model-dev.net/12/3923/2019/gmd-12-3923-2019.pdf
id doaj-a4a85408a00946019317ac99a974e5f2
record_format Article
spelling doaj-a4a85408a00946019317ac99a974e5f22020-11-24T21:36:00ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032019-09-01123923393810.5194/gmd-12-3923-2019Evaluation of leaf-level optical properties employed in land surface modelsT. MajasalmiR. M. Bright<p>Vegetation optical properties have a direct impact on canopy absorption and scattering and are thus needed for modeling surface fluxes. Although plant functional type (PFT) classification varies between different land surface models (LSMs), their optical properties must be specified. The aim of this study is to revisit the “time-invariant optical properties table” of the Simple Biosphere (SiB) model (later referred to as the “SiB table”) presented 30 years ago by Dorman and Sellers (1989), which has since been adopted by many LSMs. This revisit was needed as many of the data underlying the SiB table were not formally reviewed or published or were based on older papers or on personal communications (i.e., the validity of the optical property source data cannot be inspected due to missing data sources, outdated citation practices, and varied estimation methods). As many of today's LSMs (e.g., the Community Land Model (CLM), the Jena Scheme of Atmosphere Biosphere Coupling in Hamburg (JSBACH), and the Joint UK Land Environment Simulator (JULES)) either rely on the optical properties of the SiB table or lack references altogether for those they do employ, there is a clear need to assess (and confirm or correct) the appropriateness of those being used in today's LSMs. Here, we use various spectral databases to synthesize and harmonize the key optical property information of PFT classification shared by many leading LSMs. For forests, such classifications typically differentiate PFTs by broad geo-climatic zones (i.e., tropical, boreal, temperate) and phenology (i.e., deciduous vs. evergreen). For short-statured vegetation, such classifications typically differentiate between crops, grasses, and photosynthetic pathway. Using the PFT classification of the CLM (version 5) as an example, we found the optical properties of the visible band (VIS; 400–700&thinsp;nm) to fall within the range of measured values. However, in the near-infrared and shortwave infrared bands (NIR and SWIR; e.g., 701–2500&thinsp;nm, referred to as “NIR”) notable differences between CLM default and measured values were observed, thus suggesting that NIR optical properties are in need of an update. For example, for conifer PFTs, the measured mean needle single scattering albedo (SSA, i.e., the sum of reflectance and transmittance) estimates in NIR were 62&thinsp;% and 78&thinsp;% larger than the CLM default parameters, and for PFTs with flat leaves, the measured mean leaf SSA values in NIR were 20&thinsp;%, 14&thinsp;%, and 19&thinsp;% larger than the CLM defaults. We also found that while the CLM5 PFT-dependent leaf angle values were sufficient for forested PFTs and grasses, for crop PFTs the default parameterization appeared too vertically oriented, thus warranting an update. In addition, we propose using separate bark reflectance values for conifer and deciduous PFTs and demonstrate how shoot-level clumping correction can be incorporated into LSMs to mitigate violations of turbid media assumption and Beer's law caused by the nonrandomness of finite-sized foliage elements.</p>https://www.geosci-model-dev.net/12/3923/2019/gmd-12-3923-2019.pdf
collection DOAJ
language English
format Article
sources DOAJ
author T. Majasalmi
R. M. Bright
spellingShingle T. Majasalmi
R. M. Bright
Evaluation of leaf-level optical properties employed in land surface models
Geoscientific Model Development
author_facet T. Majasalmi
R. M. Bright
author_sort T. Majasalmi
title Evaluation of leaf-level optical properties employed in land surface models
title_short Evaluation of leaf-level optical properties employed in land surface models
title_full Evaluation of leaf-level optical properties employed in land surface models
title_fullStr Evaluation of leaf-level optical properties employed in land surface models
title_full_unstemmed Evaluation of leaf-level optical properties employed in land surface models
title_sort evaluation of leaf-level optical properties employed in land surface models
publisher Copernicus Publications
series Geoscientific Model Development
issn 1991-959X
1991-9603
publishDate 2019-09-01
description <p>Vegetation optical properties have a direct impact on canopy absorption and scattering and are thus needed for modeling surface fluxes. Although plant functional type (PFT) classification varies between different land surface models (LSMs), their optical properties must be specified. The aim of this study is to revisit the “time-invariant optical properties table” of the Simple Biosphere (SiB) model (later referred to as the “SiB table”) presented 30 years ago by Dorman and Sellers (1989), which has since been adopted by many LSMs. This revisit was needed as many of the data underlying the SiB table were not formally reviewed or published or were based on older papers or on personal communications (i.e., the validity of the optical property source data cannot be inspected due to missing data sources, outdated citation practices, and varied estimation methods). As many of today's LSMs (e.g., the Community Land Model (CLM), the Jena Scheme of Atmosphere Biosphere Coupling in Hamburg (JSBACH), and the Joint UK Land Environment Simulator (JULES)) either rely on the optical properties of the SiB table or lack references altogether for those they do employ, there is a clear need to assess (and confirm or correct) the appropriateness of those being used in today's LSMs. Here, we use various spectral databases to synthesize and harmonize the key optical property information of PFT classification shared by many leading LSMs. For forests, such classifications typically differentiate PFTs by broad geo-climatic zones (i.e., tropical, boreal, temperate) and phenology (i.e., deciduous vs. evergreen). For short-statured vegetation, such classifications typically differentiate between crops, grasses, and photosynthetic pathway. Using the PFT classification of the CLM (version 5) as an example, we found the optical properties of the visible band (VIS; 400–700&thinsp;nm) to fall within the range of measured values. However, in the near-infrared and shortwave infrared bands (NIR and SWIR; e.g., 701–2500&thinsp;nm, referred to as “NIR”) notable differences between CLM default and measured values were observed, thus suggesting that NIR optical properties are in need of an update. For example, for conifer PFTs, the measured mean needle single scattering albedo (SSA, i.e., the sum of reflectance and transmittance) estimates in NIR were 62&thinsp;% and 78&thinsp;% larger than the CLM default parameters, and for PFTs with flat leaves, the measured mean leaf SSA values in NIR were 20&thinsp;%, 14&thinsp;%, and 19&thinsp;% larger than the CLM defaults. We also found that while the CLM5 PFT-dependent leaf angle values were sufficient for forested PFTs and grasses, for crop PFTs the default parameterization appeared too vertically oriented, thus warranting an update. In addition, we propose using separate bark reflectance values for conifer and deciduous PFTs and demonstrate how shoot-level clumping correction can be incorporated into LSMs to mitigate violations of turbid media assumption and Beer's law caused by the nonrandomness of finite-sized foliage elements.</p>
url https://www.geosci-model-dev.net/12/3923/2019/gmd-12-3923-2019.pdf
work_keys_str_mv AT tmajasalmi evaluationofleaflevelopticalpropertiesemployedinlandsurfacemodels
AT rmbright evaluationofleaflevelopticalpropertiesemployedinlandsurfacemodels
_version_ 1725942870846734336