Effects of Interfacial Charge on the DC Dielectric Properties of Nanocomposites

The interfacial charge phenomenon of MgO/low-density polyethylene (LDPE) and SiO2/LDPE nanocomposites was measured by synchrotron radiation small-angle X-ray scattering. Based on the Porod theory, the Porod curve of SiO2/LDPE nanocomposite shows negative divergence but the LDPE and MgO/LDPE do not,...

Full description

Bibliographic Details
Main Authors: Jiaming Yang, Congji Liu, Changji Zheng, Hong Zhao, Xuan Wang, Mingze Gao
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2016/2935202
Description
Summary:The interfacial charge phenomenon of MgO/low-density polyethylene (LDPE) and SiO2/LDPE nanocomposites was measured by synchrotron radiation small-angle X-ray scattering. Based on the Porod theory, the Porod curve of SiO2/LDPE nanocomposite shows negative divergence but the LDPE and MgO/LDPE do not, which reveals that interfacial charge may exist in the SiO2/LDPE nanocomposite. The DC dielectric properties of the nanocomposites are closely related to the interfacial charge. Experimental results show that the SiO2/LDPE nanocomposite has lower DC conductivity, less space charge, and higher DC breakdown strength than the MgO/LDPE nanocomposite. It is thought that the interfacial charge has a positive effect on the DC dielectric performance of nanocomposites, and the mechanism could be attributed to the scattering effects of the interfacial charge on the carrier migration. There is no obvious interfacial charge in the MgO/LDPE nanocomposite, but it still has excellent DC dielectric properties compared with LDPE, which indicates that the interfacial charge is not the only factor affecting the dielectric properties; the dipole interface layer and the reduction of free volume can also inhibit the migration of carriers and decrease electrons free path, improving the dielectric performance.
ISSN:1687-4110
1687-4129