ZIRCONIUM AND HAFNIUM DIOXIDES DOPED BY OXIDES OF YTTRIUM, SCANDIUM AND ERBIUM: NEW METHODS OF SYNTHESIS AND PROPERTIES

The results of elaborating a method for the synthesis of zirconia and hafnia doped by rare earths (yttrium, erbium and scandium) by using low-hydrated hydroxides of zirconium and hafnium as precursors are reported. The low-hydrated zirconium and hafnium hydroxides were prepared using the heterophase...

Full description

Bibliographic Details
Main Authors: E. E. Nikishina, E. N. Lebedeva, D. V. Drobot
Format: Article
Language:Russian
Published: MIREA - Russian Technological University 2018-10-01
Series:Тонкие химические технологии
Subjects:
Online Access:https://www.finechem-mirea.ru/jour/article/view/167
Description
Summary:The results of elaborating a method for the synthesis of zirconia and hafnia doped by rare earths (yttrium, erbium and scandium) by using low-hydrated hydroxides of zirconium and hafnium as precursors are reported. The low-hydrated zirconium and hafnium hydroxides were prepared using the heterophase reaction. The physicochemical properties (including sorption properties) of low-hydrated zirconium and hafnium hydroxides ZrxHf1-x(OH)3÷1O0.5÷1.5·0.9÷2.9H2Owere studied. The scheme of thermal decomposition of low-hydrated hydroxides in air was determined. The sorption properties of the low-hydrated hafnium hydroxide are less pronounced owing to the lower amount of sorption centers, in this case, hydroxo and aqua groups. The sequence of stages of thermal decomposition of rare earth acetates was elucidated. Single-phase zirconia and hafnia doped by rare earths (yttrium, erbium and scandium) were obtained. The parameters of the elementary lattice were calculated for each phase. It was established that the stabilization of zirconium dioxide with yttria leads to the formation of interstitial solid solutions based on tetragonal zirconia (in the case of the composition Y2O3×4ZrO2 - cubic modification), with erbium oxide - interstitial solid solutions based on cubic zirconia; with scandium oxide - solid solutions based on tetragonal zirconia. The article presents the results of measuring electrical conductivity.
ISSN:2410-6593
2686-7575