Biosorption Behavior of Basic Red 46 and Violet 3 by Dead Pleurotus mutilus from Single- and Multicomponent Systems

The performance of nonviable P. mutilus for removal of Crystal Violet (CV) and Basic Red 46 (BR46) was investigated in single and binary systems. Batch kinetic studies were carried out as a function of pH, temperature, biomass amount, and dye concentration to determine the decolorization efficiency...

Full description

Bibliographic Details
Main Authors: N. Yeddou Mezenner, A. Hamadi, S. Kaddour, Z. Bensaadi, A. Bensmaili
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Chemistry
Online Access:http://dx.doi.org/10.1155/2013/965041
Description
Summary:The performance of nonviable P. mutilus for removal of Crystal Violet (CV) and Basic Red 46 (BR46) was investigated in single and binary systems. Batch kinetic studies were carried out as a function of pH, temperature, biomass amount, and dye concentration to determine the decolorization efficiency of biosorbent. In single system, the biosorption capacities of P. M. reached 166 and 76.92 mg/g for CV and BR46, respectively. A comparison of kinetic models applied to the adsorption of basic dyes onto P. Mutilus was evaluated for the pseudo-second-order and intraparticle diffusion kinetics models. The experimental data fitted very well the pseudo-second-order kinetic model, whereas diffusion is not only the rate-controlling step. The thermodynamic study indicates that the adsorption of dyes is spontaneous and endothermic process. In binary system, the biosorption capacities of P. Mutilus for both dyes decreased significantly compared to that in single system. Competitive coefficients calculated on a concentration basis using Sheindorf-Rebhun-Sheintuch (SRS) equation were useful for describing the degree of competitive interaction in P. M.
ISSN:2090-9063
2090-9071