The role of 18FDG PET/CT imaging of aortic atherosclerosis: prospective study and technique optimization

Abstract Background Atherosclerosis is an inflammatory disease of the inner wall of large and medium-sized arteries. The progress of atherosclerosis based on a lot of factors, including systemic involvement of disease, the precise vascular arterial affection, and the degree of flow obstruction. We a...

Full description

Bibliographic Details
Main Authors: Amr A. Elfattah Hassan Gadalla, Nahla Dessoki Elsayed
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:The Egyptian Journal of Radiology and Nuclear Medicine
Subjects:
Online Access:https://doi.org/10.1186/s43055-020-0137-1
Description
Summary:Abstract Background Atherosclerosis is an inflammatory disease of the inner wall of large and medium-sized arteries. The progress of atherosclerosis based on a lot of factors, including systemic involvement of disease, the precise vascular arterial affection, and the degree of flow obstruction. We aim in this study to estimate the FDG uptake of the aortic wall in the early and delayed imaging and to correlate this with the morphologic changes detected by CT. Results This is a prospective study that was performed through 1 year. The study included 50 patients [30 males (60%) and 20 females (40%)] with male to female mean ratio 1.5:1 and their mean age 58.3 ± 15.7 years. Each patient underwent dual time-point 18F-FDG PET CT imaging at ~ 60 min (Early images) and 180 min (delayed images) after the administration of 18F-FDG. For each patient, the global 18F-FDG uptake in the aorta was determined by manually drawing regions of interest (ROIs) around the outer part of the arterial wall on every slice of the attenuation-corrected transverse PET CT images. Per-patient, per-time-point, per-vessel, and per-ROI radiotracer decay-corrected and body weight-corrected SUVs were calculated, resulting in a single mean value of maximum SUV for the aorta. The aortic wall FDG uptake was measured in both early and delayed images and expressed in terms of SUVmax. Then Retention index percentage of the aorta was measured. The retention index percentage was calculated by subtracting the SUVmax in early images from the SUVmax in delayed images and dividing by SUVmax in early images. Conclusion Aortic wall FDG uptake can be used as an additional parameter as well as a biomarker on evaluation of the arterial atherosclerotic activity. Delayed post 3 h FDG imaging is more accurate than the routine early post 1 h imaging in evaluating the atherosclerotic activity.
ISSN:2090-4762