<inline-formula> <mml:math display="block" id="mm799"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>*</mml:mo> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> Polarization as an Additional Constraint on New Physics in the <i>b</i> → <i>cτ</i><inline-formula> <mml:math display="block" id="mm610"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ν</mml:mi> <mml:mo stretchy="false">¯</mml:mo> </mml:mover> </mml:mrow> </mml:semantics> </mml:math> </inline-formula><sub><i>τ</i></sub> Transition

Measurements of the branching fractions of the semileptonic decays <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>→</mo> <msup&...

Full description

Bibliographic Details
Main Authors: Mikhail A. Ivanov, Jürgen G. Körner, Pietro Santorelli, Chien-Thang Tran
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Particles
Subjects:
Online Access:https://www.mdpi.com/2571-712X/3/1/16
id doaj-a4637ef62da54557a8e1c1b6fb3e4406
record_format Article
spelling doaj-a4637ef62da54557a8e1c1b6fb3e44062020-11-25T02:59:47ZengMDPI AGParticles2571-712X2020-03-013119320710.3390/particles3010016particles3010016<inline-formula> <mml:math display="block" id="mm799"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>*</mml:mo> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> Polarization as an Additional Constraint on New Physics in the <i>b</i> → <i>cτ</i><inline-formula> <mml:math display="block" id="mm610"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ν</mml:mi> <mml:mo stretchy="false">¯</mml:mo> </mml:mover> </mml:mrow> </mml:semantics> </mml:math> </inline-formula><sub><i>τ</i></sub> TransitionMikhail A. Ivanov0Jürgen G. Körner1Pietro Santorelli2Chien-Thang Tran3Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, RussiaPRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, GermanyDipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, Edificio 6, 80126 Napoli, ItalyDipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, Edificio 6, 80126 Napoli, ItalyMeasurements of the branching fractions of the semileptonic decays <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>→</mo> <msup> <mi>D</mi> <mrow> <mo stretchy="false">(</mo> <mo>*</mo> <mo stretchy="false">)</mo> </mrow> </msup> <mi>τ</mi> <msub> <mover> <mi>ν</mi> <mo stretchy="false">¯</mo> </mover> <mi>τ</mi> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>→</mo> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> <mi>τ</mi> <msub> <mover> <mi>ν</mi> <mo stretchy="false">¯</mo> </mover> <mi>τ</mi> </msub> </mrow> </semantics> </math> </inline-formula> systematically exceed the Standard Model predictions, pointing to possible signals of new physics that can violate lepton flavor universality. The unknown origin of new physics realized in these channels can be probed using a general effective Hamiltonian constructed from four-fermion operators and the corresponding Wilson coefficients. Previously, constraints on these Wilson coefficients were obtained mainly from the experimental data for the branching fractions. Meanwhile, polarization observables were only theoretically studied. The situation has changed with more experimental data having become available, particularly those regarding the polarization of the tau and the <inline-formula> <math display="inline"> <semantics> <msup> <mi>D</mi> <mo>*</mo> </msup> </semantics> </math> </inline-formula> meson. In this study, we discuss the implications of the new data on the overall picture. We then include them in an updated fit of the Wilson coefficients using all hadronic form factors from our covariant constituent quark model. The use of our form factors provides an analysis independent of those in the literature. Several new-physics scenarios are studied with the corresponding theoretical predictions provided, which are useful for future experimental studies. In particular, we find that under the one-dominant-operator assumption, no operator survives at <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula>. Moreover, the scalar operators <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>S</mi> <mi>L</mi> </msub> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>S</mi> <mi>R</mi> </msub> </msub> </semantics> </math> </inline-formula> are ruled out at <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula> if one uses the constraint <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">B</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>→</mo> <mi>τ</mi> <msub> <mi>ν</mi> <mi>τ</mi> </msub> <mo stretchy="false">)</mo> <mo>≤</mo> <mn>10</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, while the more relaxed constraint <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">B</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>→</mo> <mi>τ</mi> <msub> <mi>ν</mi> <mi>τ</mi> </msub> <mo stretchy="false">)</mo> <mo>≤</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> still allows these operators at <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula>, but only minimally. The inclusion of the new data for the <inline-formula> <math display="inline"> <semantics> <msup> <mi>D</mi> <mo>*</mo> </msup> </semantics> </math> </inline-formula> polarization fraction <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>F</mi> <mi>L</mi> <msup> <mi>D</mi> <mo>*</mo> </msup> </msubsup> </semantics> </math> </inline-formula> reduces the likelihood of the right-handed vector operator <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>V</mi> <mi>R</mi> </msub> </msub> </semantics> </math> </inline-formula> and significantly constrains the tensor operator <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>T</mi> <mi>L</mi> </msub> </msub> </semantics> </math> </inline-formula>. Specifically, the <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>F</mi> <mi>L</mi> <msup> <mi>D</mi> <mo>*</mo> </msup> </msubsup> </semantics> </math> </inline-formula> alone rules out <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>T</mi> <mi>L</mi> </msub> </msub> </semantics> </math> </inline-formula> at <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula>. Finally, we show that the longitudinal polarization <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> </semantics> </math> </inline-formula> of the tau in the decays <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>→</mo> <msup> <mi>D</mi> <mo>*</mo> </msup> <mi>τ</mi> <msub> <mover> <mi>ν</mi> <mo stretchy="false">¯</mo> </mover> <mi>τ</mi> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>→</mo> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> <mi>τ</mi> <msub> <mover> <mi>ν</mi> <mo stretchy="false">¯</mo> </mover> <mi>τ</mi> </msub> </mrow> </semantics> </math> </inline-formula> is extremely sensitive to the tensor operator. Within the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula> allowed region, the best-fit value <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>L</mi> </msub> <mo>=</mo> <mn>0.04</mn> <mo>+</mo> <mi>i</mi> <mn>0.17</mn> </mrow> </semantics> </math> </inline-formula> predicts <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> <mrow> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mo>*</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.34</mn> </mrow> </semantics> </math> </inline-formula>, which are at about 33% larger than the Standard Model (SM) prediction <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> <mrow> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mo>*</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.50</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.51</mn> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2571-712X/3/1/16semileptonic decay<i>b</i> mesonlepton flavor universalitybeyond standard modelform factorscovariant constituent quark modelbranching fractionpolarization
collection DOAJ
language English
format Article
sources DOAJ
author Mikhail A. Ivanov
Jürgen G. Körner
Pietro Santorelli
Chien-Thang Tran
spellingShingle Mikhail A. Ivanov
Jürgen G. Körner
Pietro Santorelli
Chien-Thang Tran
<inline-formula> <mml:math display="block" id="mm799"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>*</mml:mo> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> Polarization as an Additional Constraint on New Physics in the <i>b</i> → <i>cτ</i><inline-formula> <mml:math display="block" id="mm610"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ν</mml:mi> <mml:mo stretchy="false">¯</mml:mo> </mml:mover> </mml:mrow> </mml:semantics> </mml:math> </inline-formula><sub><i>τ</i></sub> Transition
Particles
semileptonic decay
<i>b</i> meson
lepton flavor universality
beyond standard model
form factors
covariant constituent quark model
branching fraction
polarization
author_facet Mikhail A. Ivanov
Jürgen G. Körner
Pietro Santorelli
Chien-Thang Tran
author_sort Mikhail A. Ivanov
title <inline-formula> <mml:math display="block" id="mm799"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>*</mml:mo> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> Polarization as an Additional Constraint on New Physics in the <i>b</i> → <i>cτ</i><inline-formula> <mml:math display="block" id="mm610"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ν</mml:mi> <mml:mo stretchy="false">¯</mml:mo> </mml:mover> </mml:mrow> </mml:semantics> </mml:math> </inline-formula><sub><i>τ</i></sub> Transition
title_short <inline-formula> <mml:math display="block" id="mm799"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>*</mml:mo> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> Polarization as an Additional Constraint on New Physics in the <i>b</i> → <i>cτ</i><inline-formula> <mml:math display="block" id="mm610"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ν</mml:mi> <mml:mo stretchy="false">¯</mml:mo> </mml:mover> </mml:mrow> </mml:semantics> </mml:math> </inline-formula><sub><i>τ</i></sub> Transition
title_full <inline-formula> <mml:math display="block" id="mm799"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>*</mml:mo> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> Polarization as an Additional Constraint on New Physics in the <i>b</i> → <i>cτ</i><inline-formula> <mml:math display="block" id="mm610"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ν</mml:mi> <mml:mo stretchy="false">¯</mml:mo> </mml:mover> </mml:mrow> </mml:semantics> </mml:math> </inline-formula><sub><i>τ</i></sub> Transition
title_fullStr <inline-formula> <mml:math display="block" id="mm799"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>*</mml:mo> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> Polarization as an Additional Constraint on New Physics in the <i>b</i> → <i>cτ</i><inline-formula> <mml:math display="block" id="mm610"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ν</mml:mi> <mml:mo stretchy="false">¯</mml:mo> </mml:mover> </mml:mrow> </mml:semantics> </mml:math> </inline-formula><sub><i>τ</i></sub> Transition
title_full_unstemmed <inline-formula> <mml:math display="block" id="mm799"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mo>*</mml:mo> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> Polarization as an Additional Constraint on New Physics in the <i>b</i> → <i>cτ</i><inline-formula> <mml:math display="block" id="mm610"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ν</mml:mi> <mml:mo stretchy="false">¯</mml:mo> </mml:mover> </mml:mrow> </mml:semantics> </mml:math> </inline-formula><sub><i>τ</i></sub> Transition
title_sort <inline-formula> <mml:math display="block" id="mm799"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>d</mml:mi> <mml:mo>*</mml:mo> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula> polarization as an additional constraint on new physics in the <i>b</i> → <i>cτ</i><inline-formula> <mml:math display="block" id="mm610"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>ν</mml:mi> <mml:mo stretchy="false">¯</mml:mo> </mml:mover> </mml:mrow> </mml:semantics> </mml:math> </inline-formula><sub><i>τ</i></sub> transition
publisher MDPI AG
series Particles
issn 2571-712X
publishDate 2020-03-01
topic semileptonic decay
<i>b</i> meson
lepton flavor universality
beyond standard model
form factors
covariant constituent quark model
branching fraction
polarization
url https://www.mdpi.com/2571-712X/3/1/16
work_keys_str_mv AT mikhailaivanov inlineformulammlmathdisplayblockidmm799mmlsemanticsmmlmrowmmlmsupmmlmidmmlmimmlmommlmommlmsupmmlmrowmmlsemanticsmmlmathinlineformulapolarizationasanadditionalconstraintonnewphysicsintheibiictiinlineformulammlmathdisplayblockidmm610mmlsemanticsmmlmrowmmlmo
AT jurgengkorner inlineformulammlmathdisplayblockidmm799mmlsemanticsmmlmrowmmlmsupmmlmidmmlmimmlmommlmommlmsupmmlmrowmmlsemanticsmmlmathinlineformulapolarizationasanadditionalconstraintonnewphysicsintheibiictiinlineformulammlmathdisplayblockidmm610mmlsemanticsmmlmrowmmlmo
AT pietrosantorelli inlineformulammlmathdisplayblockidmm799mmlsemanticsmmlmrowmmlmsupmmlmidmmlmimmlmommlmommlmsupmmlmrowmmlsemanticsmmlmathinlineformulapolarizationasanadditionalconstraintonnewphysicsintheibiictiinlineformulammlmathdisplayblockidmm610mmlsemanticsmmlmrowmmlmo
AT chienthangtran inlineformulammlmathdisplayblockidmm799mmlsemanticsmmlmrowmmlmsupmmlmidmmlmimmlmommlmommlmsupmmlmrowmmlsemanticsmmlmathinlineformulapolarizationasanadditionalconstraintonnewphysicsintheibiictiinlineformulammlmathdisplayblockidmm610mmlsemanticsmmlmrowmmlmo
_version_ 1724701073599365120
description Measurements of the branching fractions of the semileptonic decays <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>→</mo> <msup> <mi>D</mi> <mrow> <mo stretchy="false">(</mo> <mo>*</mo> <mo stretchy="false">)</mo> </mrow> </msup> <mi>τ</mi> <msub> <mover> <mi>ν</mi> <mo stretchy="false">¯</mo> </mover> <mi>τ</mi> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>→</mo> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> <mi>τ</mi> <msub> <mover> <mi>ν</mi> <mo stretchy="false">¯</mo> </mover> <mi>τ</mi> </msub> </mrow> </semantics> </math> </inline-formula> systematically exceed the Standard Model predictions, pointing to possible signals of new physics that can violate lepton flavor universality. The unknown origin of new physics realized in these channels can be probed using a general effective Hamiltonian constructed from four-fermion operators and the corresponding Wilson coefficients. Previously, constraints on these Wilson coefficients were obtained mainly from the experimental data for the branching fractions. Meanwhile, polarization observables were only theoretically studied. The situation has changed with more experimental data having become available, particularly those regarding the polarization of the tau and the <inline-formula> <math display="inline"> <semantics> <msup> <mi>D</mi> <mo>*</mo> </msup> </semantics> </math> </inline-formula> meson. In this study, we discuss the implications of the new data on the overall picture. We then include them in an updated fit of the Wilson coefficients using all hadronic form factors from our covariant constituent quark model. The use of our form factors provides an analysis independent of those in the literature. Several new-physics scenarios are studied with the corresponding theoretical predictions provided, which are useful for future experimental studies. In particular, we find that under the one-dominant-operator assumption, no operator survives at <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula>. Moreover, the scalar operators <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>S</mi> <mi>L</mi> </msub> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>S</mi> <mi>R</mi> </msub> </msub> </semantics> </math> </inline-formula> are ruled out at <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula> if one uses the constraint <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">B</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>→</mo> <mi>τ</mi> <msub> <mi>ν</mi> <mi>τ</mi> </msub> <mo stretchy="false">)</mo> <mo>≤</mo> <mn>10</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, while the more relaxed constraint <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">B</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>→</mo> <mi>τ</mi> <msub> <mi>ν</mi> <mi>τ</mi> </msub> <mo stretchy="false">)</mo> <mo>≤</mo> <mn>30</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula> still allows these operators at <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula>, but only minimally. The inclusion of the new data for the <inline-formula> <math display="inline"> <semantics> <msup> <mi>D</mi> <mo>*</mo> </msup> </semantics> </math> </inline-formula> polarization fraction <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>F</mi> <mi>L</mi> <msup> <mi>D</mi> <mo>*</mo> </msup> </msubsup> </semantics> </math> </inline-formula> reduces the likelihood of the right-handed vector operator <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>V</mi> <mi>R</mi> </msub> </msub> </semantics> </math> </inline-formula> and significantly constrains the tensor operator <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>T</mi> <mi>L</mi> </msub> </msub> </semantics> </math> </inline-formula>. Specifically, the <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>F</mi> <mi>L</mi> <msup> <mi>D</mi> <mo>*</mo> </msup> </msubsup> </semantics> </math> </inline-formula> alone rules out <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">O</mi> <msub> <mi>T</mi> <mi>L</mi> </msub> </msub> </semantics> </math> </inline-formula> at <inline-formula> <math display="inline"> <semantics> <mrow> <mn>1</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula>. Finally, we show that the longitudinal polarization <inline-formula> <math display="inline"> <semantics> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> </semantics> </math> </inline-formula> of the tau in the decays <inline-formula> <math display="inline"> <semantics> <mrow> <mi>B</mi> <mo>→</mo> <msup> <mi>D</mi> <mo>*</mo> </msup> <mi>τ</mi> <msub> <mover> <mi>ν</mi> <mo stretchy="false">¯</mo> </mover> <mi>τ</mi> </msub> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>→</mo> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> <mi>τ</mi> <msub> <mover> <mi>ν</mi> <mo stretchy="false">¯</mo> </mover> <mi>τ</mi> </msub> </mrow> </semantics> </math> </inline-formula> is extremely sensitive to the tensor operator. Within the <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2</mn> <mi>σ</mi> </mrow> </semantics> </math> </inline-formula> allowed region, the best-fit value <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>T</mi> <mi>L</mi> </msub> <mo>=</mo> <mn>0.04</mn> <mo>+</mo> <mi>i</mi> <mn>0.17</mn> </mrow> </semantics> </math> </inline-formula> predicts <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> <mrow> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mo>*</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.33</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.34</mn> </mrow> </semantics> </math> </inline-formula>, which are at about 33% larger than the Standard Model (SM) prediction <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> <mrow> <mo stretchy="false">(</mo> <msup> <mi>D</mi> <mo>*</mo> </msup> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.50</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msubsup> <mi>P</mi> <mi>L</mi> <mi>τ</mi> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mo>−</mo> <mn>0.51</mn> </mrow> </semantics> </math> </inline-formula>.