Summary: | Advances in Infrared (IR) cameras, as well as hardware computational capabilities, contributed towards qualifying vision systems as reliable plasma diagnostics for nuclear fusion experiments. Robust autonomous machine protection and plasma control during operation require real-time processing that might be facilitated by Graphics Processing Units (GPUs). One of the current aims of image plasma diagnostics involves thermal events detection and analysis with thermal imaging. The paper investigates the suitability of the NVIDIA Jetson TX2 Tegra-based embedded platform for real-time thermal events detection. Development of real-time processing algorithms on an embedded System-on-a-Chip (SoC) requires additional effort due to the constrained resources, yet low-power consumption enables embedded GPUs to be applied in MicroTCA.4 computing architecture that is prevalent in nuclear fusion projects. For this purpose, the authors have proposed, developed and optimised GPU-accelerated algorithms with the use of available software tools for NVIDIA Tegra systems. Furthermore, the implemented algorithms are evaluated and benchmarked on Wendelstein 7-X (W7-X) stellarator experimental data against the corresponding alternative Central Processing Unit (CPU) implementations. Considerable improvement is observed for the accelerated algorithms that enable real-time detection on the embedded SoC platform, yet some encountered limitations when developing parallel image processing routines are described and signified.
|