PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG

Semarang is the provincial capital of Central Java, with infrastructure and economic’s growth was high. The phenomenon of power outages that occurred in Semarang, certainly disrupted economic development in Semarang. Large electrical energy consumed by industrial-scale consumers and households in th...

Full description

Bibliographic Details
Main Authors: Suparti Suparti, Alan Prahutama
Format: Article
Language:English
Published: Universitas Diponegoro 2016-12-01
Series:Media Statistika
Online Access:https://ejournal.undip.ac.id/index.php/media_statistika/article/view/13128
id doaj-a4571c3f254f418bba1f0f3a97a81f56
record_format Article
spelling doaj-a4571c3f254f418bba1f0f3a97a81f562020-11-25T03:55:37ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472016-12-0192859310.14710/medstat.9.2.85-9310129PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANGSuparti Suparti0Alan Prahutama1Departemen Statistika, Universitas DiponegoroDepartemen Statistika, Universitas DiponegoroSemarang is the provincial capital of Central Java, with infrastructure and economic’s growth was high. The phenomenon of power outages that occurred in Semarang, certainly disrupted economic development in Semarang. Large electrical energy consumed by industrial-scale consumers and households in the San Francisco area, monitored or recorded automatically and presented into a historical data load power consumption. Therefore, this study modeling the load power consumption at a time when not influenced by the use of electrical load (t-1)-th. Modeling using nonparametric regression approach with Local polynomial. In this study, the kernel used is a Gaussian kernel. In local polynomial modeling, determined optimum bandwidth. One of the optimum bandwidth determination using the Generalized Cross Validation (GCV). GCV values obtained amounted to 1425.726 with a minimum bandwidth of 394. Modelling generate local polynomial of order 2 with MSE value of 1408.672.   Keywords: electrical load, local polinomial, gaussian kernel, GCV.https://ejournal.undip.ac.id/index.php/media_statistika/article/view/13128
collection DOAJ
language English
format Article
sources DOAJ
author Suparti Suparti
Alan Prahutama
spellingShingle Suparti Suparti
Alan Prahutama
PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG
Media Statistika
author_facet Suparti Suparti
Alan Prahutama
author_sort Suparti Suparti
title PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG
title_short PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG
title_full PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG
title_fullStr PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG
title_full_unstemmed PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG
title_sort pemodelan regresi nonparametrik menggunakan pendekatan polinomial lokal pada beban listrik di kota semarang
publisher Universitas Diponegoro
series Media Statistika
issn 1979-3693
2477-0647
publishDate 2016-12-01
description Semarang is the provincial capital of Central Java, with infrastructure and economic’s growth was high. The phenomenon of power outages that occurred in Semarang, certainly disrupted economic development in Semarang. Large electrical energy consumed by industrial-scale consumers and households in the San Francisco area, monitored or recorded automatically and presented into a historical data load power consumption. Therefore, this study modeling the load power consumption at a time when not influenced by the use of electrical load (t-1)-th. Modeling using nonparametric regression approach with Local polynomial. In this study, the kernel used is a Gaussian kernel. In local polynomial modeling, determined optimum bandwidth. One of the optimum bandwidth determination using the Generalized Cross Validation (GCV). GCV values obtained amounted to 1425.726 with a minimum bandwidth of 394. Modelling generate local polynomial of order 2 with MSE value of 1408.672.   Keywords: electrical load, local polinomial, gaussian kernel, GCV.
url https://ejournal.undip.ac.id/index.php/media_statistika/article/view/13128
work_keys_str_mv AT supartisuparti pemodelanregresinonparametrikmenggunakanpendekatanpolinomiallokalpadabebanlistrikdikotasemarang
AT alanprahutama pemodelanregresinonparametrikmenggunakanpendekatanpolinomiallokalpadabebanlistrikdikotasemarang
_version_ 1724469141972189184