PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG
Semarang is the provincial capital of Central Java, with infrastructure and economic’s growth was high. The phenomenon of power outages that occurred in Semarang, certainly disrupted economic development in Semarang. Large electrical energy consumed by industrial-scale consumers and households in th...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Diponegoro
2016-12-01
|
Series: | Media Statistika |
Online Access: | https://ejournal.undip.ac.id/index.php/media_statistika/article/view/13128 |
id |
doaj-a4571c3f254f418bba1f0f3a97a81f56 |
---|---|
record_format |
Article |
spelling |
doaj-a4571c3f254f418bba1f0f3a97a81f562020-11-25T03:55:37ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472016-12-0192859310.14710/medstat.9.2.85-9310129PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANGSuparti Suparti0Alan Prahutama1Departemen Statistika, Universitas DiponegoroDepartemen Statistika, Universitas DiponegoroSemarang is the provincial capital of Central Java, with infrastructure and economic’s growth was high. The phenomenon of power outages that occurred in Semarang, certainly disrupted economic development in Semarang. Large electrical energy consumed by industrial-scale consumers and households in the San Francisco area, monitored or recorded automatically and presented into a historical data load power consumption. Therefore, this study modeling the load power consumption at a time when not influenced by the use of electrical load (t-1)-th. Modeling using nonparametric regression approach with Local polynomial. In this study, the kernel used is a Gaussian kernel. In local polynomial modeling, determined optimum bandwidth. One of the optimum bandwidth determination using the Generalized Cross Validation (GCV). GCV values obtained amounted to 1425.726 with a minimum bandwidth of 394. Modelling generate local polynomial of order 2 with MSE value of 1408.672. Keywords: electrical load, local polinomial, gaussian kernel, GCV.https://ejournal.undip.ac.id/index.php/media_statistika/article/view/13128 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Suparti Suparti Alan Prahutama |
spellingShingle |
Suparti Suparti Alan Prahutama PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG Media Statistika |
author_facet |
Suparti Suparti Alan Prahutama |
author_sort |
Suparti Suparti |
title |
PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG |
title_short |
PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG |
title_full |
PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG |
title_fullStr |
PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG |
title_full_unstemmed |
PEMODELAN REGRESI NONPARAMETRIK MENGGUNAKAN PENDEKATAN POLINOMIAL LOKAL PADA BEBAN LISTRIK DI KOTA SEMARANG |
title_sort |
pemodelan regresi nonparametrik menggunakan pendekatan polinomial lokal pada beban listrik di kota semarang |
publisher |
Universitas Diponegoro |
series |
Media Statistika |
issn |
1979-3693 2477-0647 |
publishDate |
2016-12-01 |
description |
Semarang is the provincial capital of Central Java, with infrastructure and economic’s growth was high. The phenomenon of power outages that occurred in Semarang, certainly disrupted economic development in Semarang. Large electrical energy consumed by industrial-scale consumers and households in the San Francisco area, monitored or recorded automatically and presented into a historical data load power consumption. Therefore, this study modeling the load power consumption at a time when not influenced by the use of electrical load (t-1)-th. Modeling using nonparametric regression approach with Local polynomial. In this study, the kernel used is a Gaussian kernel. In local polynomial modeling, determined optimum bandwidth. One of the optimum bandwidth determination using the Generalized Cross Validation (GCV). GCV values obtained amounted to 1425.726 with a minimum bandwidth of 394. Modelling generate local polynomial of order 2 with MSE value of 1408.672.
Keywords: electrical load, local polinomial, gaussian kernel, GCV. |
url |
https://ejournal.undip.ac.id/index.php/media_statistika/article/view/13128 |
work_keys_str_mv |
AT supartisuparti pemodelanregresinonparametrikmenggunakanpendekatanpolinomiallokalpadabebanlistrikdikotasemarang AT alanprahutama pemodelanregresinonparametrikmenggunakanpendekatanpolinomiallokalpadabebanlistrikdikotasemarang |
_version_ |
1724469141972189184 |