Effect of digital elevation model’s resolution in producing flood hazard maps

Flooding is one of the most devastating natural disasters occurring annually in the Philippines. A call for a solution for this malady is very challenging as well as crucial to be addressed. Mapping flood hazard is an effective tool in determining the extent and depth of floods associated with hazar...

Full description

Bibliographic Details
Main Authors: J.L. Ogania, G.R. Puno, M.B.T. Alivio, J.M.G. Taylaran
Format: Article
Language:English
Published: GJESM Publisher 2019-01-01
Series:Global Journal of Environmental Science and Management
Subjects:
Online Access:https://www.gjesm.net/article_33038_96c8277ea87418bf098b14e0e602b466.pdf
id doaj-a436e365396a42db9380910c643d023b
record_format Article
spelling doaj-a436e365396a42db9380910c643d023b2021-02-02T08:22:01ZengGJESM PublisherGlobal Journal of Environmental Science and Management2383-35722383-38662019-01-01519510610.22034/gjesm.2019.01.0833038Effect of digital elevation model’s resolution in producing flood hazard mapsJ.L. Ogania0G.R. Puno1M.B.T. Alivio2J.M.G. Taylaran3Geo-Safer Project, College of Forestry and Environmental Science, Central Mindanao University, Musuan, Bukidnon, PhilippinesGeo-Safer Project, College of Forestry and Environmental Science, Central Mindanao University, Musuan, Bukidnon, PhilippinesGeo-Safer Project, College of Forestry and Environmental Science, Central Mindanao University, Musuan, Bukidnon, PhilippinesGeo-Safer Project, College of Forestry and Environmental Science, Central Mindanao University, Musuan, Bukidnon, PhilippinesFlooding is one of the most devastating natural disasters occurring annually in the Philippines. A call for a solution for this malady is very challenging as well as crucial to be addressed. Mapping flood hazard is an effective tool in determining the extent and depth of floods associated with hazard level in specified areas that need to be prioritized during flood occurrences. Precedent to the production of maps is the utilization of reliable and accurate topographic data. In the present study, the performance of 3 digital elevation models having different resolution was evaluated with the aid of flood modeling software such as hydrologic engineering centre-hydrologic modeling system and hydrologic engineering centre-river analysis system. The two-dimensional models were processed using three different digital elevation models, captured through light detection and ranging, interferometric synthetic aperture radar, and synthetic aperture radar technologies, to simulate and compare the flood inundation of 5-, 25- 100-year return periods. The accuracy of the generated flood maps was carried out using statistical analysis tools - Overall accuracy, F-measure and root-mean-square-error. Results reveal that using light detection and ranging–digital elevation model, the overall accuracy of the flood map is 82.5% with a fitness of 0.5333 to ground-truth data and an error of 0.32 meter in simulating flood depth which implies a promising performance of the model compared to other data sources. Thus, higher resolution digital elevation model generates more accurate flood hazard maps while coarser resolution over-predicts the flood extent.https://www.gjesm.net/article_33038_96c8277ea87418bf098b14e0e602b466.pdfDisastergeographic information system (GIS)Hydrologic engineering centre-hydrologic modeling system (HEC-HMS)InundationRiver analysis system (RAS)
collection DOAJ
language English
format Article
sources DOAJ
author J.L. Ogania
G.R. Puno
M.B.T. Alivio
J.M.G. Taylaran
spellingShingle J.L. Ogania
G.R. Puno
M.B.T. Alivio
J.M.G. Taylaran
Effect of digital elevation model’s resolution in producing flood hazard maps
Global Journal of Environmental Science and Management
Disaster
geographic information system (GIS)
Hydrologic engineering centre-hydrologic modeling system (HEC-HMS)
Inundation
River analysis system (RAS)
author_facet J.L. Ogania
G.R. Puno
M.B.T. Alivio
J.M.G. Taylaran
author_sort J.L. Ogania
title Effect of digital elevation model’s resolution in producing flood hazard maps
title_short Effect of digital elevation model’s resolution in producing flood hazard maps
title_full Effect of digital elevation model’s resolution in producing flood hazard maps
title_fullStr Effect of digital elevation model’s resolution in producing flood hazard maps
title_full_unstemmed Effect of digital elevation model’s resolution in producing flood hazard maps
title_sort effect of digital elevation model’s resolution in producing flood hazard maps
publisher GJESM Publisher
series Global Journal of Environmental Science and Management
issn 2383-3572
2383-3866
publishDate 2019-01-01
description Flooding is one of the most devastating natural disasters occurring annually in the Philippines. A call for a solution for this malady is very challenging as well as crucial to be addressed. Mapping flood hazard is an effective tool in determining the extent and depth of floods associated with hazard level in specified areas that need to be prioritized during flood occurrences. Precedent to the production of maps is the utilization of reliable and accurate topographic data. In the present study, the performance of 3 digital elevation models having different resolution was evaluated with the aid of flood modeling software such as hydrologic engineering centre-hydrologic modeling system and hydrologic engineering centre-river analysis system. The two-dimensional models were processed using three different digital elevation models, captured through light detection and ranging, interferometric synthetic aperture radar, and synthetic aperture radar technologies, to simulate and compare the flood inundation of 5-, 25- 100-year return periods. The accuracy of the generated flood maps was carried out using statistical analysis tools - Overall accuracy, F-measure and root-mean-square-error. Results reveal that using light detection and ranging–digital elevation model, the overall accuracy of the flood map is 82.5% with a fitness of 0.5333 to ground-truth data and an error of 0.32 meter in simulating flood depth which implies a promising performance of the model compared to other data sources. Thus, higher resolution digital elevation model generates more accurate flood hazard maps while coarser resolution over-predicts the flood extent.
topic Disaster
geographic information system (GIS)
Hydrologic engineering centre-hydrologic modeling system (HEC-HMS)
Inundation
River analysis system (RAS)
url https://www.gjesm.net/article_33038_96c8277ea87418bf098b14e0e602b466.pdf
work_keys_str_mv AT jlogania effectofdigitalelevationmodelsresolutioninproducingfloodhazardmaps
AT grpuno effectofdigitalelevationmodelsresolutioninproducingfloodhazardmaps
AT mbtalivio effectofdigitalelevationmodelsresolutioninproducingfloodhazardmaps
AT jmgtaylaran effectofdigitalelevationmodelsresolutioninproducingfloodhazardmaps
_version_ 1724297283152904192