Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1
The Generalized Gamma distribution is very suitable for modeling data with various forms of hazard (risk) functions, which makes the Generalized Gamma distribution useful in survival analysis. Survival analysis aims are to predict chances of survival, disease recurrence, death, and other ev...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Growing Science
2021-01-01
|
Series: | Decision Science Letters |
Online Access: | http://www.growingscience.com/dsl/Vol10/dsl_2021_3.pdf |
id |
doaj-a424f6fd551048f08f76f653d16e742e |
---|---|
record_format |
Article |
spelling |
doaj-a424f6fd551048f08f76f653d16e742e2021-05-10T10:01:10ZengGrowing ScienceDecision Science Letters1929-58041929-58122021-01-0110341542410.5267/j.dsl.2021.1.003Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1Kurniasari, DianWarsono, WarsonoIndryani, NourmaUsman, MustofaHadi, Sutopo The Generalized Gamma distribution is very suitable for modeling data with various forms of hazard (risk) functions, which makes the Generalized Gamma distribution useful in survival analysis. Survival analysis aims are to predict chances of survival, disease recurrence, death, and other events over a period of time. One characteristic of survival data is the possibility of sensors. Let X be the life span of the person being studied and the right censorship time of Cr, X is assumed to be independent with the probability density function f(x), the survival function S(x), and the hazard function h(x). A person's X life span will be known if X is less than or equal to Cr. If X is greater than Cr, the individual X survives or is censored right now. Statistical inference, especially parameter estimation is needed in analyzing empirical data. Obviously the estimation results obtained are expected to be a good estimator, namely to meet the nature of unbiased and minimum variance. This paper will discuss the results of the estimation of Generalized Gamma distribution parameters with type 1 right censored data through simulations using the Expectation Maximization method and the Maximum Likelihood Estimation method. The simulation is conducted by generating data with the sample size: 25, 50, 100, 200, 500, 1000, 1500 and 2000 as well as determining censored data of 10%, 20% and 30% by first setting the parameters used which are obtained from the data of patients with gastric cancer namely α = 1.0649, β = 1,072, θ = 59.766. Based on the results obtained from the simulations on the two estimation methods that the parameter estimation using the Maximum Likelihood Estimation method is better than the Expectation Maximization method because it provides a smaller bias and MSE value where the larger the sample size used, the estimated parameter value will get closer to the parameter in fact. In addition, the Expectation Maximization method can also be used as an alternative estimation of generalized gamma distribution parameters with type 1 right censored data because it has a bias value and MSE approaching the MLE method.http://www.growingscience.com/dsl/Vol10/dsl_2021_3.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kurniasari, Dian Warsono, Warsono Indryani, Nourma Usman, Mustofa Hadi, Sutopo |
spellingShingle |
Kurniasari, Dian Warsono, Warsono Indryani, Nourma Usman, Mustofa Hadi, Sutopo Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1 Decision Science Letters |
author_facet |
Kurniasari, Dian Warsono, Warsono Indryani, Nourma Usman, Mustofa Hadi, Sutopo |
author_sort |
Kurniasari, Dian |
title |
Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1 |
title_short |
Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1 |
title_full |
Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1 |
title_fullStr |
Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1 |
title_full_unstemmed |
Simulation of generalized Gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1 |
title_sort |
simulation of generalized gamma distribution with maximum likelihood estimation and expectation-maximization algorithm on right censored data type 1 |
publisher |
Growing Science |
series |
Decision Science Letters |
issn |
1929-5804 1929-5812 |
publishDate |
2021-01-01 |
description |
The Generalized Gamma distribution is very suitable for modeling data with various forms of hazard (risk) functions, which makes the Generalized Gamma distribution useful in survival analysis. Survival analysis aims are to predict chances of survival, disease recurrence, death, and other events over a period of time. One characteristic of survival data is the possibility of sensors. Let X be the life span of the person being studied and the right censorship time of Cr, X is assumed to be independent with the probability density function f(x), the survival function S(x), and the hazard function h(x). A person's X life span will be known if X is less than or equal to Cr. If X is greater than Cr, the individual X survives or is censored right now. Statistical inference, especially parameter estimation is needed in analyzing empirical data. Obviously the estimation results obtained are expected to be a good estimator, namely to meet the nature of unbiased and minimum variance. This paper will discuss the results of the estimation of Generalized Gamma distribution parameters with type 1 right censored data through simulations using the Expectation Maximization method and the Maximum Likelihood Estimation method. The simulation is conducted by generating data with the sample size: 25, 50, 100, 200, 500, 1000, 1500 and 2000 as well as determining censored data of 10%, 20% and 30% by first setting the parameters used which are obtained from the data of patients with gastric cancer namely α = 1.0649, β = 1,072, θ = 59.766. Based on the results obtained from the simulations on the two estimation methods that the parameter estimation using the Maximum Likelihood Estimation method is better than the Expectation Maximization method because it provides a smaller bias and MSE value where the larger the sample size used, the estimated parameter value will get closer to the parameter in fact. In addition, the Expectation Maximization method can also be used as an alternative estimation of generalized gamma distribution parameters with type 1 right censored data because it has a bias value and MSE approaching the MLE method. |
url |
http://www.growingscience.com/dsl/Vol10/dsl_2021_3.pdf |
work_keys_str_mv |
AT kurniasaridian simulationofgeneralizedgammadistributionwithmaximumlikelihoodestimationandexpectationmaximizationalgorithmonrightcensoreddatatype1 AT warsonowarsono simulationofgeneralizedgammadistributionwithmaximumlikelihoodestimationandexpectationmaximizationalgorithmonrightcensoreddatatype1 AT indryaninourma simulationofgeneralizedgammadistributionwithmaximumlikelihoodestimationandexpectationmaximizationalgorithmonrightcensoreddatatype1 AT usmanmustofa simulationofgeneralizedgammadistributionwithmaximumlikelihoodestimationandexpectationmaximizationalgorithmonrightcensoreddatatype1 AT hadisutopo simulationofgeneralizedgammadistributionwithmaximumlikelihoodestimationandexpectationmaximizationalgorithmonrightcensoreddatatype1 |
_version_ |
1721453285925191680 |