Photoactive Layer of DSSCS Based on Natural Dyes: A Study of Experiment and Theory

Three natural dyes (Forsythia suspensa, Herba Violae, and Corn leaf) have been investigated as potential sensitizers for dye-sensitized solar cells. UV-vis absorption spectra reveal that three natural dyes mainly contain the compound of pheophytin a. Among three DSSCs, the highest photo electronic c...

Full description

Bibliographic Details
Main Authors: Yuanzuo Li, Huixing Li, Peng Song, Chaofan Sun
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2015/139382
Description
Summary:Three natural dyes (Forsythia suspensa, Herba Violae, and Corn leaf) have been investigated as potential sensitizers for dye-sensitized solar cells. UV-vis absorption spectra reveal that three natural dyes mainly contain the compound of pheophytin a. Among three DSSCs, the highest photo electronic conversion efficiency η is 0.96% with open circuit voltage (VOC) of 0.66 V, short circuit current density (ISC ) of 1.97 mA cm−2, and fill factor (ff) of 0.74. Theoretical time-dependent density functional theory and charge difference density are used to explore the nature of excited states. Results demonstrate that the first state is an intramolecular charge transfer (ICT) state, and electron injection could occur owing to the thermodynamically driving force.
ISSN:1687-4110
1687-4129