Sum rule for the Compton amplitude and implications for the proton–neutron mass difference

Abstract The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of this amplitude requires a subtraction. We...

Full description

Bibliographic Details
Main Authors: J. Gasser, H. Leutwyler, A. Rusetsky
Format: Article
Language:English
Published: SpringerOpen 2020-12-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-020-08615-2
id doaj-a3eb3c454d2c493493d2317a7e2906c8
record_format Article
spelling doaj-a3eb3c454d2c493493d2317a7e2906c82020-12-06T12:49:39ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522020-12-01801212610.1140/epjc/s10052-020-08615-2Sum rule for the Compton amplitude and implications for the proton–neutron mass differenceJ. Gasser0H. Leutwyler1A. Rusetsky2Albert Einstein Center for Fundamental Physics, Institut für theoretische Physik, Universität BernAlbert Einstein Center for Fundamental Physics, Institut für theoretische Physik, Universität BernHelmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, Universität BonnAbstract The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of this amplitude requires a subtraction. We assume that the asymptotic behaviour is dominated by Reggeon exchange. This leads to a sum rule that expresses the subtraction function in terms of measurable quantities. The evaluation of this sum rule leads to $$m_{\mathrm{QED}}^{p-n}=0.58\pm 0.16\,\text {MeV}$$ m QED p - n = 0.58 ± 0.16 MeV .https://doi.org/10.1140/epjc/s10052-020-08615-2
collection DOAJ
language English
format Article
sources DOAJ
author J. Gasser
H. Leutwyler
A. Rusetsky
spellingShingle J. Gasser
H. Leutwyler
A. Rusetsky
Sum rule for the Compton amplitude and implications for the proton–neutron mass difference
European Physical Journal C: Particles and Fields
author_facet J. Gasser
H. Leutwyler
A. Rusetsky
author_sort J. Gasser
title Sum rule for the Compton amplitude and implications for the proton–neutron mass difference
title_short Sum rule for the Compton amplitude and implications for the proton–neutron mass difference
title_full Sum rule for the Compton amplitude and implications for the proton–neutron mass difference
title_fullStr Sum rule for the Compton amplitude and implications for the proton–neutron mass difference
title_full_unstemmed Sum rule for the Compton amplitude and implications for the proton–neutron mass difference
title_sort sum rule for the compton amplitude and implications for the proton–neutron mass difference
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2020-12-01
description Abstract The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of this amplitude requires a subtraction. We assume that the asymptotic behaviour is dominated by Reggeon exchange. This leads to a sum rule that expresses the subtraction function in terms of measurable quantities. The evaluation of this sum rule leads to $$m_{\mathrm{QED}}^{p-n}=0.58\pm 0.16\,\text {MeV}$$ m QED p - n = 0.58 ± 0.16 MeV .
url https://doi.org/10.1140/epjc/s10052-020-08615-2
work_keys_str_mv AT jgasser sumruleforthecomptonamplitudeandimplicationsfortheprotonneutronmassdifference
AT hleutwyler sumruleforthecomptonamplitudeandimplicationsfortheprotonneutronmassdifference
AT arusetsky sumruleforthecomptonamplitudeandimplicationsfortheprotonneutronmassdifference
_version_ 1724398657372946432