Sum rule for the Compton amplitude and implications for the proton–neutron mass difference
Abstract The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of this amplitude requires a subtraction. We...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-12-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-020-08615-2 |
Summary: | Abstract The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of this amplitude requires a subtraction. We assume that the asymptotic behaviour is dominated by Reggeon exchange. This leads to a sum rule that expresses the subtraction function in terms of measurable quantities. The evaluation of this sum rule leads to $$m_{\mathrm{QED}}^{p-n}=0.58\pm 0.16\,\text {MeV}$$ m QED p - n = 0.58 ± 0.16 MeV . |
---|---|
ISSN: | 1434-6044 1434-6052 |