Sum rule for the Compton amplitude and implications for the proton–neutron mass difference

Abstract The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of this amplitude requires a subtraction. We...

Full description

Bibliographic Details
Main Authors: J. Gasser, H. Leutwyler, A. Rusetsky
Format: Article
Language:English
Published: SpringerOpen 2020-12-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-020-08615-2
Description
Summary:Abstract The Cottingham formula expresses the leading contribution of the electromagnetic interaction to the proton-neutron mass difference as an integral over the forward Compton amplitude. Since quarks and gluons reggeize, the dispersive representation of this amplitude requires a subtraction. We assume that the asymptotic behaviour is dominated by Reggeon exchange. This leads to a sum rule that expresses the subtraction function in terms of measurable quantities. The evaluation of this sum rule leads to $$m_{\mathrm{QED}}^{p-n}=0.58\pm 0.16\,\text {MeV}$$ m QED p - n = 0.58 ± 0.16 MeV .
ISSN:1434-6044
1434-6052