Transduction of rat pancreatic islets with pseudotyped adeno-associated virus vectors

<p>Abstract</p> <p>Background</p> <p>Pancreatic islet transplantation is a promising treatment for type I diabetes mellitus, but current immunosuppressive strategies do not consistently provide long-term survival of transplanted islets. We are therefore investigating th...

Full description

Bibliographic Details
Main Authors: Blanchette-Mackie E Joan, Chiorini John A, McAlister Victor J, Schmidt Michael, Pechhold Klaus, Liu Eric, Pack Stephanie, Jou William, Dwyer Nancy K, Gavrilova Oksana, Craig Anthony T, Harlan David M, Owens Roland A
Format: Article
Language:English
Published: BMC 2009-05-01
Series:Virology Journal
Online Access:http://www.virologyj.com/content/6/1/61
Description
Summary:<p>Abstract</p> <p>Background</p> <p>Pancreatic islet transplantation is a promising treatment for type I diabetes mellitus, but current immunosuppressive strategies do not consistently provide long-term survival of transplanted islets. We are therefore investigating the use of adeno-associated viruses (AAVs) as gene therapy vectors to transduce rat islets with immunosuppressive genes prior to transplantation into diabetic mice.</p> <p>Results</p> <p>We compared the transduction efficiency of AAV2 vectors with an AAV2 capsid (AAV2/2) to AAV2 vectors pseudotyped with AAV5 (AAV2/5), AAV8 (AAV2/8) or bovine adeno-associated virus (BAAV) capsids, or an AAV2 capsid with an insertion of the low density lipoprotein receptor ligand from apolipoprotein E (AAV2apoE), on cultured islets, in the presence of helper adenovirus infection to speed expression of a GFP transgene. Confocal microscopy and flow cytometry were used. The AAV2/5 vector was superior to AAV2/2 and AAV2/8 in rat islets. Flow cytometry indicated AAV2/5-mediated gene expression in approximately 9% of rat islet cells and almost 12% of insulin-positive cells. The AAV2/8 vector had a higher dependence on the helper virus multiplicity of infection than the AAV 2/5 vector. In addition, the BAAV and AAV2apoE vectors were superior to AAV2/2 for transducing rat islets. Rat islets (300 per mouse) transduced with an AAV2/5 vector harboring the immunosuppressive transgene, <it>tgfβ1</it>, retain the ability to correct hyperglycemia when transplanted into immune-deficient diabetic mice.</p> <p>Conclusion</p> <p>AAV2/5 vectors may therefore be useful for pre-treating donor islets prior to transplantation.</p>
ISSN:1743-422X