The oriented chromatic number of edge-amalgamation of cycle graph

<p>An oriented <span class="math"><em>k</em> − </span>coloring of an oriented graph <span class="math"><em>G⃗</em></span> is a partition of <span class="math"><em>V</em>(<em>G⃗</em>)<...

Full description

Bibliographic Details
Main Authors: Dina Eka Nurvazly, Jona Martinus Manulang, Kiki A. Sugeng
Format: Article
Language:English
Published: InaCombS; Universitas Jember; dan Universitas Indonesia 2019-06-01
Series:Indonesian Journal of Combinatorics
Subjects:
Online Access:http://www.ijc.or.id/index.php/ijc/article/view/61
id doaj-a3c65a402fd641e28bf640bbf6bf332b
record_format Article
spelling doaj-a3c65a402fd641e28bf640bbf6bf332b2020-11-25T00:02:53ZengInaCombS; Universitas Jember; dan Universitas IndonesiaIndonesian Journal of Combinatorics2541-22052019-06-0131414710.19184/ijc.2019.3.1.528The oriented chromatic number of edge-amalgamation of cycle graphDina Eka Nurvazly0Jona Martinus Manulang1Kiki A. Sugeng2Universitas IndonesiaUniversitas IndonesiaUniversitas Indonesia<p>An oriented <span class="math"><em>k</em> − </span>coloring of an oriented graph <span class="math"><em>G⃗</em></span> is a partition of <span class="math"><em>V</em>(<em>G⃗</em>)</span> into <span class="math"><em>k</em></span> color classes such that no two adjacent vertices belong to the same color class, and all the arcs linking the two color classes have the same direction. The oriented chromatic number of an oriented graph <span class="math"><em>G⃗</em></span> is the minimum order of an oriented graph <span class="math"><em>H⃗</em></span> to which <span class="math"><em>G⃗</em></span> admits a homomorphism to <span class="math"><em>H⃗</em></span>. The oriented chromatic number of an undirected graph <span class="math"><em>G</em></span> is the maximum oriented chromatic number of all possible orientations of the graph <span class="math"><em>G</em></span>. In this paper, we show that every edge amalgamation of cycle graphs, which also known as a book graph, has oriented chromatic number less than or equal to six.</p>http://www.ijc.or.id/index.php/ijc/article/view/61edge amalgamation of cyclehomomorphismoriented chromatic number
collection DOAJ
language English
format Article
sources DOAJ
author Dina Eka Nurvazly
Jona Martinus Manulang
Kiki A. Sugeng
spellingShingle Dina Eka Nurvazly
Jona Martinus Manulang
Kiki A. Sugeng
The oriented chromatic number of edge-amalgamation of cycle graph
Indonesian Journal of Combinatorics
edge amalgamation of cycle
homomorphism
oriented chromatic number
author_facet Dina Eka Nurvazly
Jona Martinus Manulang
Kiki A. Sugeng
author_sort Dina Eka Nurvazly
title The oriented chromatic number of edge-amalgamation of cycle graph
title_short The oriented chromatic number of edge-amalgamation of cycle graph
title_full The oriented chromatic number of edge-amalgamation of cycle graph
title_fullStr The oriented chromatic number of edge-amalgamation of cycle graph
title_full_unstemmed The oriented chromatic number of edge-amalgamation of cycle graph
title_sort oriented chromatic number of edge-amalgamation of cycle graph
publisher InaCombS; Universitas Jember; dan Universitas Indonesia
series Indonesian Journal of Combinatorics
issn 2541-2205
publishDate 2019-06-01
description <p>An oriented <span class="math"><em>k</em> − </span>coloring of an oriented graph <span class="math"><em>G⃗</em></span> is a partition of <span class="math"><em>V</em>(<em>G⃗</em>)</span> into <span class="math"><em>k</em></span> color classes such that no two adjacent vertices belong to the same color class, and all the arcs linking the two color classes have the same direction. The oriented chromatic number of an oriented graph <span class="math"><em>G⃗</em></span> is the minimum order of an oriented graph <span class="math"><em>H⃗</em></span> to which <span class="math"><em>G⃗</em></span> admits a homomorphism to <span class="math"><em>H⃗</em></span>. The oriented chromatic number of an undirected graph <span class="math"><em>G</em></span> is the maximum oriented chromatic number of all possible orientations of the graph <span class="math"><em>G</em></span>. In this paper, we show that every edge amalgamation of cycle graphs, which also known as a book graph, has oriented chromatic number less than or equal to six.</p>
topic edge amalgamation of cycle
homomorphism
oriented chromatic number
url http://www.ijc.or.id/index.php/ijc/article/view/61
work_keys_str_mv AT dinaekanurvazly theorientedchromaticnumberofedgeamalgamationofcyclegraph
AT jonamartinusmanulang theorientedchromaticnumberofedgeamalgamationofcyclegraph
AT kikiasugeng theorientedchromaticnumberofedgeamalgamationofcyclegraph
AT dinaekanurvazly orientedchromaticnumberofedgeamalgamationofcyclegraph
AT jonamartinusmanulang orientedchromaticnumberofedgeamalgamationofcyclegraph
AT kikiasugeng orientedchromaticnumberofedgeamalgamationofcyclegraph
_version_ 1725436110044135424