A note on the boundedness in a chemotaxis-growth system with nonlinear sensitivity
This paper deals with a parabolic-elliptic chemotaxis-growth system with nonlinear sensitivity \begin{equation*}\label{1a} \begin{cases} u_t=\Delta u-\chi\nabla\cdot(\psi(u)\nabla v)+f(u), &(x,t)\in \Omega\times (0,\infty), \\ 0=\Delta v-v+g(u), &(x,t)\in \Omega\times (0,\infty), \end{cases...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2018-02-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6469 |
Summary: | This paper deals with a parabolic-elliptic chemotaxis-growth system with nonlinear sensitivity
\begin{equation*}\label{1a}
\begin{cases}
u_t=\Delta u-\chi\nabla\cdot(\psi(u)\nabla v)+f(u), &(x,t)\in \Omega\times (0,\infty), \\
0=\Delta v-v+g(u), &(x,t)\in \Omega\times (0,\infty),
\end{cases}
\end{equation*}
under homogeneous Neumann boundary conditions in a smooth bounded domain $\Omega\subset \mathbb{R}^{n}$ $(n\geq1)$, where $\chi>0$, the chemotactic sensitivity $\psi(u)\leq(u+1)^{q}$ with $q>0$, $g(u)\leq(u+1)^{l}$ with $l\in \mathbb{R}$ and $f(u)$ is a logistic source. The main goal of this paper is to extend a previous result on global boundedness by Zheng et al. [J. Math. Anal. Appl. 424(2015), 509–522] under the condition that $1\leq q+l<\frac{2}{n}+1$ to the case $q+l<1$. |
---|---|
ISSN: | 1417-3875 1417-3875 |