Energy Consumption Prediction in a Novel Automated Photovoltaic Design Platform

This paper describes a multi-step algorithm used to predict and typify the energy consumption profile of a prosumer, allowing the automation of the design of self-consumption photovoltaic (PV) power systems in a novel platform called PV SPREAD. The algorithm uses different methodologies to address v...

Full description

Bibliographic Details
Main Authors: Pereira Tiago C., Murta-Pina João, Amaral-Lopes Rui, Monteiro Fernando, Moraes Samuel, Oliveira Francisco
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/15/e3sconf_icren2021_00014.pdf
Description
Summary:This paper describes a multi-step algorithm used to predict and typify the energy consumption profile of a prosumer, allowing the automation of the design of self-consumption photovoltaic (PV) power systems in a novel platform called PV SPREAD. The algorithm uses different methodologies to address various possible scenarios of data availability. In this paper, those scenarios are addressed using nonlinear autoregressive artificial neural networks (ANN) with external inputs (NARX) to predict energy consumption. Results reveal that the proposed algorithm successfully addresses data gaps in a hotel load profile used as a case study. The results also show the limitations of NARX when residential clients are analyzed.
ISSN:2267-1242