W^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficients
<span style="font-family: DejaVu Sans,sans-serif;">We prove a well-posedness result in the intersection class of <em>W</em><sup><em>2,p </em></sup>with <em>W</em><sub><em>0</em></sub><sup><em>1,p</...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Università degli Studi di Catania
1992-05-01
|
Series: | Le Matematiche |
Online Access: | http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/581 |
id |
doaj-a36b97d024e74c56b083059f14ed3dbb |
---|---|
record_format |
Article |
spelling |
doaj-a36b97d024e74c56b083059f14ed3dbb2020-11-25T03:18:55ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52981992-05-01471177186548W^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficientsCarmela Vitanza<span style="font-family: DejaVu Sans,sans-serif;">We prove a well-posedness result in the intersection class of <em>W</em><sup><em>2,p </em></sup>with <em>W</em><sub><em>0</em></sub><sup><em>1,p</em></sup> for the Dirichlet problem (*) below. We assume <em>L</em> to be an elliptic second order operator with discontinuous coefficients and lower order terms. The paper extends a recent result (see [1], [2]) for operators restricted to leading terms.</span>http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/581 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Carmela Vitanza |
spellingShingle |
Carmela Vitanza W^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficients Le Matematiche |
author_facet |
Carmela Vitanza |
author_sort |
Carmela Vitanza |
title |
W^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficients |
title_short |
W^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficients |
title_full |
W^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficients |
title_fullStr |
W^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficients |
title_full_unstemmed |
W^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficients |
title_sort |
w^{2,p}-regularity for a class of elliptic second order equations with discontinuous coefficients |
publisher |
Università degli Studi di Catania |
series |
Le Matematiche |
issn |
0373-3505 2037-5298 |
publishDate |
1992-05-01 |
description |
<span style="font-family: DejaVu Sans,sans-serif;">We prove a well-posedness result in the intersection class of <em>W</em><sup><em>2,p </em></sup>with <em>W</em><sub><em>0</em></sub><sup><em>1,p</em></sup> for the Dirichlet problem (*) below. We assume <em>L</em> to be an elliptic second order operator with discontinuous coefficients and lower order terms. The paper extends a recent result (see [1], [2]) for operators restricted to leading terms.</span> |
url |
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/581 |
work_keys_str_mv |
AT carmelavitanza w2pregularityforaclassofellipticsecondorderequationswithdiscontinuouscoefficients |
_version_ |
1724624938808115200 |