Summary: | Radial magnetic bearings (RMBs) are one of the most commonly used magnetic bearings. They are used widely in the field of ultra-high speed and ultra-precise numerical control machine tools, bearingless motors, high speed flywheels, artificial heart pumps, and molecular pumps, and they are being strengthened and extended in various important areas. In this paper, a comprehensive overview is given of different bearing topologies of RMBs with different stator poles that differ in their construction, the driving mode of electromagnets, power consumption, cost, magnetic circuits, and symmetry. RMBs with different poles and couplings between the two bearing axes in the radial direction responsible for cross-coupling generation are compared. In addition, different shaped rotors are compared, as the performances of magnetic bearing-rotor systems are of great concern to rotor constructions. Furthermore, the parameter design methods, the mathematical models and control strategies of the RMBs are described in detail. From the comparison of topologies, models and control methods for RMBs, the advantages, disadvantages and utilizable perspectives are also analyzed. Moreover, several possible development trends of the RMBs are discussed. Keywords: Radial magnetic bearings (RMBs), Topologies, Mathematical mode, Control strategies, Development trends
|