Focal cortical seizures start as standing waves and propagate respecting homotopic connectivity
Focal cortical seizures result from local and widespread propagation of excitatory activity. Here the authors employ widefield calcium imaging in mouse visual areas to demonstrate that these seizures start as local synchronous activation and then propagate along the connectivity that underlies norma...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-08-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-017-00159-6 |
Summary: | Focal cortical seizures result from local and widespread propagation of excitatory activity. Here the authors employ widefield calcium imaging in mouse visual areas to demonstrate that these seizures start as local synchronous activation and then propagate along the connectivity that underlies normal sensory processing. |
---|---|
ISSN: | 2041-1723 |