Numerical Flow Characterization around a Type 209 Submarine Using OpenFOAM

The safety of underwater operation depends on the accuracy of its speed logs which depends on the location of its probe and the calibration thoroughness. Thus, probes are placed in areas where the flow of water is smooth, continuous, without high velocity gradients, air bubbles, or vortical structur...

Full description

Bibliographic Details
Main Authors: Ruben J. Paredes, Maria T. Quintuña, Mijail Arias-Hidalgo, Raju Datla
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/6/2/66
id doaj-a31f2c65f7c940d48c070c23dc8f0209
record_format Article
spelling doaj-a31f2c65f7c940d48c070c23dc8f02092021-02-04T00:00:22ZengMDPI AGFluids2311-55212021-02-016666610.3390/fluids6020066Numerical Flow Characterization around a Type 209 Submarine Using OpenFOAMRuben J. Paredes0Maria T. Quintuña1Mijail Arias-Hidalgo2Raju Datla3Escuela Superior Politécnica del Litoral, ESPOL, ESPOL Polytechnic University, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil 09-01-5863, EcuadorEscuela Superior Politécnica del Litoral, ESPOL, ESPOL Polytechnic University, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil 09-01-5863, EcuadorEscuela Superior Politécnica del Litoral, ESPOL, ESPOL Polytechnic University, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil 09-01-5863, EcuadorDavidson Laboratory, Stevens Institute of Technology, Hoboken, NJ 07030, USAThe safety of underwater operation depends on the accuracy of its speed logs which depends on the location of its probe and the calibration thoroughness. Thus, probes are placed in areas where the flow of water is smooth, continuous, without high velocity gradients, air bubbles, or vortical structures. In the present work, the flow around two different submarines is numerically described in deep-water and near-surface conditions to identify hull zones where probes could be installed. First, the numerical setup of a multiphase solver supplied with OpenFOAM v7 was verified and validated using the DARPA SUBOFF-5470 submarine at scaled model including the hull and sail configuration at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>5.4</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mi>r</mi><mo>=</mo><mn>0.466</mn></mrow></semantics></math></inline-formula>. Later, the grid sensitivity of the resistance was assessed for the full-scale Type 209/1300 submarine at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>0.347</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mi>r</mi><mo>=</mo><mn>0.194</mn></mrow></semantics></math></inline-formula>. Free-surface effect on resistance and flow characteristics was evaluated by comparing different operational conditions. Results shows that the bow and near free-surface regions should be avoided due to high flow velocity gradient, pressure fluctuations, and large turbulent vortical structures. Moreover, free-surface effect is stronger close to the bow nose. In conclusion, the probe could be installed in the acceleration region where the local flow velocity is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the navigation speed at surface condition. A 4% correction factor should be applied to the probe readings to compensate free-surface effect.https://www.mdpi.com/2311-5521/6/2/66submarineflow characterizationvortex identificationfull-scale simulationtype 209 classDARPA SUBOFF
collection DOAJ
language English
format Article
sources DOAJ
author Ruben J. Paredes
Maria T. Quintuña
Mijail Arias-Hidalgo
Raju Datla
spellingShingle Ruben J. Paredes
Maria T. Quintuña
Mijail Arias-Hidalgo
Raju Datla
Numerical Flow Characterization around a Type 209 Submarine Using OpenFOAM
Fluids
submarine
flow characterization
vortex identification
full-scale simulation
type 209 class
DARPA SUBOFF
author_facet Ruben J. Paredes
Maria T. Quintuña
Mijail Arias-Hidalgo
Raju Datla
author_sort Ruben J. Paredes
title Numerical Flow Characterization around a Type 209 Submarine Using OpenFOAM
title_short Numerical Flow Characterization around a Type 209 Submarine Using OpenFOAM
title_full Numerical Flow Characterization around a Type 209 Submarine Using OpenFOAM
title_fullStr Numerical Flow Characterization around a Type 209 Submarine Using OpenFOAM
title_full_unstemmed Numerical Flow Characterization around a Type 209 Submarine Using OpenFOAM
title_sort numerical flow characterization around a type 209 submarine using openfoam
publisher MDPI AG
series Fluids
issn 2311-5521
publishDate 2021-02-01
description The safety of underwater operation depends on the accuracy of its speed logs which depends on the location of its probe and the calibration thoroughness. Thus, probes are placed in areas where the flow of water is smooth, continuous, without high velocity gradients, air bubbles, or vortical structures. In the present work, the flow around two different submarines is numerically described in deep-water and near-surface conditions to identify hull zones where probes could be installed. First, the numerical setup of a multiphase solver supplied with OpenFOAM v7 was verified and validated using the DARPA SUBOFF-5470 submarine at scaled model including the hull and sail configuration at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>5.4</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mi>r</mi><mo>=</mo><mn>0.466</mn></mrow></semantics></math></inline-formula>. Later, the grid sensitivity of the resistance was assessed for the full-scale Type 209/1300 submarine at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><mo>/</mo><mi>D</mi><mo>=</mo><mn>0.347</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mi>r</mi><mo>=</mo><mn>0.194</mn></mrow></semantics></math></inline-formula>. Free-surface effect on resistance and flow characteristics was evaluated by comparing different operational conditions. Results shows that the bow and near free-surface regions should be avoided due to high flow velocity gradient, pressure fluctuations, and large turbulent vortical structures. Moreover, free-surface effect is stronger close to the bow nose. In conclusion, the probe could be installed in the acceleration region where the local flow velocity is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>15</mn><mo>%</mo></mrow></semantics></math></inline-formula> higher than the navigation speed at surface condition. A 4% correction factor should be applied to the probe readings to compensate free-surface effect.
topic submarine
flow characterization
vortex identification
full-scale simulation
type 209 class
DARPA SUBOFF
url https://www.mdpi.com/2311-5521/6/2/66
work_keys_str_mv AT rubenjparedes numericalflowcharacterizationaroundatype209submarineusingopenfoam
AT mariatquintuna numericalflowcharacterizationaroundatype209submarineusingopenfoam
AT mijailariashidalgo numericalflowcharacterizationaroundatype209submarineusingopenfoam
AT rajudatla numericalflowcharacterizationaroundatype209submarineusingopenfoam
_version_ 1724286085959254016