On the gauge-natural operators similar to the twisted Dorfman-Courant bracket

All \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) sending linear \(3\)-forms \(H \in \Gamma^{l}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^\infty\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE \oplus T^*E)\times \Gamma^l_E(TE \oplus T^*E)\to \Gamma^l_E(...

Full description

Bibliographic Details
Main Author: Włodzimierz M. Mikulski
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2021-03-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol41/2/art/opuscula_math_4110.pdf
id doaj-a31f0b5d116445ac97785b18e1f9720b
record_format Article
spelling doaj-a31f0b5d116445ac97785b18e1f9720b2021-03-17T21:02:50ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742021-03-01412205226https://doi.org/10.7494/OpMath.2021.41.2.2054110On the gauge-natural operators similar to the twisted Dorfman-Courant bracketWłodzimierz M. Mikulski0https://orcid.org/0000-0002-2905-0461Jagiellonian University, Department of Mathematics, S. Łojasiewicza 6, Cracow, PolandAll \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) sending linear \(3\)-forms \(H \in \Gamma^{l}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^\infty\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE \oplus T^*E)\times \Gamma^l_E(TE \oplus T^*E)\to \Gamma^l_E(TE \oplus T^*E)\] transforming pairs of linear sections of \(TE \oplus T^*E \to E\) into linear sections of \( TE \oplus T^*E \to E\) are completely described. The complete descriptions is given of all generalized twisted Dorfman-Courant brackets \(C\) (i.e. \(C\) as above such that \(C_0\) is the Dorfman-Courant bracket) satisfying the Jacobi identity for closed linear \(3\)-forms \(H\). An interesting natural characterization of the (usual) twisted Dorfman-Courant bracket is presented.https://www.opuscula.agh.edu.pl/vol41/2/art/opuscula_math_4110.pdfnatural operatorlinear vector fieldlinear formtwisted dorfman-courant bracketthe jacobi identity in leibniz form
collection DOAJ
language English
format Article
sources DOAJ
author Włodzimierz M. Mikulski
spellingShingle Włodzimierz M. Mikulski
On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
Opuscula Mathematica
natural operator
linear vector field
linear form
twisted dorfman-courant bracket
the jacobi identity in leibniz form
author_facet Włodzimierz M. Mikulski
author_sort Włodzimierz M. Mikulski
title On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
title_short On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
title_full On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
title_fullStr On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
title_full_unstemmed On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
title_sort on the gauge-natural operators similar to the twisted dorfman-courant bracket
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2021-03-01
description All \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) sending linear \(3\)-forms \(H \in \Gamma^{l}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^\infty\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE \oplus T^*E)\times \Gamma^l_E(TE \oplus T^*E)\to \Gamma^l_E(TE \oplus T^*E)\] transforming pairs of linear sections of \(TE \oplus T^*E \to E\) into linear sections of \( TE \oplus T^*E \to E\) are completely described. The complete descriptions is given of all generalized twisted Dorfman-Courant brackets \(C\) (i.e. \(C\) as above such that \(C_0\) is the Dorfman-Courant bracket) satisfying the Jacobi identity for closed linear \(3\)-forms \(H\). An interesting natural characterization of the (usual) twisted Dorfman-Courant bracket is presented.
topic natural operator
linear vector field
linear form
twisted dorfman-courant bracket
the jacobi identity in leibniz form
url https://www.opuscula.agh.edu.pl/vol41/2/art/opuscula_math_4110.pdf
work_keys_str_mv AT włodzimierzmmikulski onthegaugenaturaloperatorssimilartothetwisteddorfmancourantbracket
_version_ 1724218206693883904