Elastic-plastic analysis of bisteel i-section beams/Bimetalių dvitėjų sijų būvio analizė, įvertinant plastinių deformacijų įtaką

The elastic-plastic analysis of simple bisteel I-section beam subjected to uniform distributed load (Fig 1) is considered in this paper. The bisteel beam presents a composition of high-strength steel inclusions for the flanges in the region of maximum stresses and of low-strength steel for remainin...

Full description

Bibliographic Details
Main Authors: Arūnas Jaras, Rimantas Kačianauskas
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2001-04-01
Series:Journal of Civil Engineering and Management
Subjects:
-
Online Access:http://journals.vgtu.lt/index.php/JCEM/article/view/9173
id doaj-a30b93f7f90342ba895ce0806bb3d325
record_format Article
spelling doaj-a30b93f7f90342ba895ce0806bb3d3252021-07-02T14:12:47ZengVilnius Gediminas Technical UniversityJournal of Civil Engineering and Management1392-37301822-36052001-04-017210.3846/13921525.2001.10531713Elastic-plastic analysis of bisteel i-section beams/Bimetalių dvitėjų sijų būvio analizė, įvertinant plastinių deformacijų įtakąArūnas Jaras0Rimantas Kačianauskas1Numerical Modelling Laboratory , Vilnius Gediminas Technical University , Saulėtekio al. 11, LT-2040 , Vilnius , LithuaniaDept of Strength of Materials , Vilnius Gediminas Technical University , Saulėtekio al. 11, LT-2040 , Vilnius , Lithuania The elastic-plastic analysis of simple bisteel I-section beam subjected to uniform distributed load (Fig 1) is considered in this paper. The bisteel beam presents a composition of high-strength steel inclusions for the flanges in the region of maximum stresses and of low-strength steel for remaining volume of the beam. The aim of the paper is development of the explicit analytical model for description of plastic regions with respect to different steel properties as well as to dimensions of high-strength inclusions. The geometrical linear approach and perfectly plastic material model have been assumed. The variation of the strength ratio of the both steels and the variation of the length of inclusion leads to different distributions of plastic regions in the web and the flanges (Fig 2). By fixing the depth of plastic penetration different explicit expressions (1–10) of the limit bending moment and plastic boundaries (11–18) presented in Fig 3 have been derived. After integration over elastic and plastic regions explicit expressions (19–21) of middle-span deflection have been derived. Influence of different dimensions and material properties are investigated and presented graphically on Figs 5–8. The proposed analytical model has been also tested numerically by the finite element method. The ANSYS code and tetrahedral elements have been used for these purpose (Figs 9–11). A good agreement between the proposed analytical model and numerical experiments has been obtained if the relative length of the high-strength inclusion does not exceed 60% (l inc /l ≤ 0.6) (Fig 12). Outside the range of this limit the influence of shear stresses is growing and analytical model has to be corrected by additional terms. First Published Online: 30 Jul 2012 http://journals.vgtu.lt/index.php/JCEM/article/view/9173-
collection DOAJ
language English
format Article
sources DOAJ
author Arūnas Jaras
Rimantas Kačianauskas
spellingShingle Arūnas Jaras
Rimantas Kačianauskas
Elastic-plastic analysis of bisteel i-section beams/Bimetalių dvitėjų sijų būvio analizė, įvertinant plastinių deformacijų įtaką
Journal of Civil Engineering and Management
-
author_facet Arūnas Jaras
Rimantas Kačianauskas
author_sort Arūnas Jaras
title Elastic-plastic analysis of bisteel i-section beams/Bimetalių dvitėjų sijų būvio analizė, įvertinant plastinių deformacijų įtaką
title_short Elastic-plastic analysis of bisteel i-section beams/Bimetalių dvitėjų sijų būvio analizė, įvertinant plastinių deformacijų įtaką
title_full Elastic-plastic analysis of bisteel i-section beams/Bimetalių dvitėjų sijų būvio analizė, įvertinant plastinių deformacijų įtaką
title_fullStr Elastic-plastic analysis of bisteel i-section beams/Bimetalių dvitėjų sijų būvio analizė, įvertinant plastinių deformacijų įtaką
title_full_unstemmed Elastic-plastic analysis of bisteel i-section beams/Bimetalių dvitėjų sijų būvio analizė, įvertinant plastinių deformacijų įtaką
title_sort elastic-plastic analysis of bisteel i-section beams/bimetalių dvitėjų sijų būvio analizė, įvertinant plastinių deformacijų įtaką
publisher Vilnius Gediminas Technical University
series Journal of Civil Engineering and Management
issn 1392-3730
1822-3605
publishDate 2001-04-01
description The elastic-plastic analysis of simple bisteel I-section beam subjected to uniform distributed load (Fig 1) is considered in this paper. The bisteel beam presents a composition of high-strength steel inclusions for the flanges in the region of maximum stresses and of low-strength steel for remaining volume of the beam. The aim of the paper is development of the explicit analytical model for description of plastic regions with respect to different steel properties as well as to dimensions of high-strength inclusions. The geometrical linear approach and perfectly plastic material model have been assumed. The variation of the strength ratio of the both steels and the variation of the length of inclusion leads to different distributions of plastic regions in the web and the flanges (Fig 2). By fixing the depth of plastic penetration different explicit expressions (1–10) of the limit bending moment and plastic boundaries (11–18) presented in Fig 3 have been derived. After integration over elastic and plastic regions explicit expressions (19–21) of middle-span deflection have been derived. Influence of different dimensions and material properties are investigated and presented graphically on Figs 5–8. The proposed analytical model has been also tested numerically by the finite element method. The ANSYS code and tetrahedral elements have been used for these purpose (Figs 9–11). A good agreement between the proposed analytical model and numerical experiments has been obtained if the relative length of the high-strength inclusion does not exceed 60% (l inc /l ≤ 0.6) (Fig 12). Outside the range of this limit the influence of shear stresses is growing and analytical model has to be corrected by additional terms. First Published Online: 30 Jul 2012
topic -
url http://journals.vgtu.lt/index.php/JCEM/article/view/9173
work_keys_str_mv AT arunasjaras elasticplasticanalysisofbisteelisectionbeamsbimetaliudvitejusijubuvioanalizeivertinantplastiniudeformacijuitaka
AT rimantaskacianauskas elasticplasticanalysisofbisteelisectionbeamsbimetaliudvitejusijubuvioanalizeivertinantplastiniudeformacijuitaka
_version_ 1721328197883133952