Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
This article concerns the existence of solutions and the decay of the energy of the mixed problem for the coupled system of Klein-Gordon equations $$displaylines{ u'' - Delta u + alpha v^{ 2}u=0 quadhbox{in }Omega imes (0, infty), cr v'' - Delta v + alpha u^{2}v=0 quadhbox{...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2010-08-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2010/120/abstr.html |
id |
doaj-a2ffdaba68194a35a1df2c45ddd3cdb5 |
---|---|
record_format |
Article |
spelling |
doaj-a2ffdaba68194a35a1df2c45ddd3cdb52020-11-24T23:55:30ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912010-08-012010120,119Nonlinear boundary dissipation for a coupled system of Klein-Gordon equationsAldo Trajano LouredoM. Milla MirandaThis article concerns the existence of solutions and the decay of the energy of the mixed problem for the coupled system of Klein-Gordon equations $$displaylines{ u'' - Delta u + alpha v^{ 2}u=0 quadhbox{in }Omega imes (0, infty), cr v'' - Delta v + alpha u^{2}v=0 quadhbox{in }Omega imes (0, infty), }$$ with the nonlinear boundary conditions, $$displaylines{ frac{partial u}{partial u} + h_1(.,u')=0 quadhbox{on } Gamma_1 imes (0, infty), cr frac{partial v}{partial u} + h_2(.,v')=0 quadhbox{on } Gamma_1 imes (0, infty), }$$ and boundary conditions $u=v=0$ on $(Gamma setminus Gamma_1) imes (0,infty)$, where $Omega$ is a bounded open set of $mathbb{R}^n~(n leq 3)$, $alpha >0$ a real number, $Gamma_1$ a subset of the boundary $Gamma$ of $Omega$ and $h_i$ a real function defined on $Gamma_1 imes (0, infty)$. http://ejde.math.txstate.edu/Volumes/2010/120/abstr.htmlGalerkin methodspecial basisboundary stabilization |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Aldo Trajano Louredo M. Milla Miranda |
spellingShingle |
Aldo Trajano Louredo M. Milla Miranda Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations Electronic Journal of Differential Equations Galerkin method special basis boundary stabilization |
author_facet |
Aldo Trajano Louredo M. Milla Miranda |
author_sort |
Aldo Trajano Louredo |
title |
Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations |
title_short |
Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations |
title_full |
Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations |
title_fullStr |
Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations |
title_full_unstemmed |
Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations |
title_sort |
nonlinear boundary dissipation for a coupled system of klein-gordon equations |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2010-08-01 |
description |
This article concerns the existence of solutions and the decay of the energy of the mixed problem for the coupled system of Klein-Gordon equations $$displaylines{ u'' - Delta u + alpha v^{ 2}u=0 quadhbox{in }Omega imes (0, infty), cr v'' - Delta v + alpha u^{2}v=0 quadhbox{in }Omega imes (0, infty), }$$ with the nonlinear boundary conditions, $$displaylines{ frac{partial u}{partial u} + h_1(.,u')=0 quadhbox{on } Gamma_1 imes (0, infty), cr frac{partial v}{partial u} + h_2(.,v')=0 quadhbox{on } Gamma_1 imes (0, infty), }$$ and boundary conditions $u=v=0$ on $(Gamma setminus Gamma_1) imes (0,infty)$, where $Omega$ is a bounded open set of $mathbb{R}^n~(n leq 3)$, $alpha >0$ a real number, $Gamma_1$ a subset of the boundary $Gamma$ of $Omega$ and $h_i$ a real function defined on $Gamma_1 imes (0, infty)$. |
topic |
Galerkin method special basis boundary stabilization |
url |
http://ejde.math.txstate.edu/Volumes/2010/120/abstr.html |
work_keys_str_mv |
AT aldotrajanolouredo nonlinearboundarydissipationforacoupledsystemofkleingordonequations AT mmillamiranda nonlinearboundarydissipationforacoupledsystemofkleingordonequations |
_version_ |
1725462194839093248 |