Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations

This article concerns the existence of solutions and the decay of the energy of the mixed problem for the coupled system of Klein-Gordon equations $$displaylines{ u'' - Delta u + alpha v^{ 2}u=0 quadhbox{in }Omega imes (0, infty), cr v'' - Delta v + alpha u^{2}v=0 quadhbox{...

Full description

Bibliographic Details
Main Authors: Aldo Trajano Louredo, M. Milla Miranda
Format: Article
Language:English
Published: Texas State University 2010-08-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2010/120/abstr.html
id doaj-a2ffdaba68194a35a1df2c45ddd3cdb5
record_format Article
spelling doaj-a2ffdaba68194a35a1df2c45ddd3cdb52020-11-24T23:55:30ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912010-08-012010120,119Nonlinear boundary dissipation for a coupled system of Klein-Gordon equationsAldo Trajano LouredoM. Milla MirandaThis article concerns the existence of solutions and the decay of the energy of the mixed problem for the coupled system of Klein-Gordon equations $$displaylines{ u'' - Delta u + alpha v^{ 2}u=0 quadhbox{in }Omega imes (0, infty), cr v'' - Delta v + alpha u^{2}v=0 quadhbox{in }Omega imes (0, infty), }$$ with the nonlinear boundary conditions, $$displaylines{ frac{partial u}{partial u} + h_1(.,u')=0 quadhbox{on } Gamma_1 imes (0, infty), cr frac{partial v}{partial u} + h_2(.,v')=0 quadhbox{on } Gamma_1 imes (0, infty), }$$ and boundary conditions $u=v=0$ on $(Gamma setminus Gamma_1) imes (0,infty)$, where $Omega$ is a bounded open set of $mathbb{R}^n~(n leq 3)$, $alpha >0$ a real number, $Gamma_1$ a subset of the boundary $Gamma$ of $Omega$ and $h_i$ a real function defined on $Gamma_1 imes (0, infty)$. http://ejde.math.txstate.edu/Volumes/2010/120/abstr.htmlGalerkin methodspecial basisboundary stabilization
collection DOAJ
language English
format Article
sources DOAJ
author Aldo Trajano Louredo
M. Milla Miranda
spellingShingle Aldo Trajano Louredo
M. Milla Miranda
Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
Electronic Journal of Differential Equations
Galerkin method
special basis
boundary stabilization
author_facet Aldo Trajano Louredo
M. Milla Miranda
author_sort Aldo Trajano Louredo
title Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
title_short Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
title_full Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
title_fullStr Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
title_full_unstemmed Nonlinear boundary dissipation for a coupled system of Klein-Gordon equations
title_sort nonlinear boundary dissipation for a coupled system of klein-gordon equations
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2010-08-01
description This article concerns the existence of solutions and the decay of the energy of the mixed problem for the coupled system of Klein-Gordon equations $$displaylines{ u'' - Delta u + alpha v^{ 2}u=0 quadhbox{in }Omega imes (0, infty), cr v'' - Delta v + alpha u^{2}v=0 quadhbox{in }Omega imes (0, infty), }$$ with the nonlinear boundary conditions, $$displaylines{ frac{partial u}{partial u} + h_1(.,u')=0 quadhbox{on } Gamma_1 imes (0, infty), cr frac{partial v}{partial u} + h_2(.,v')=0 quadhbox{on } Gamma_1 imes (0, infty), }$$ and boundary conditions $u=v=0$ on $(Gamma setminus Gamma_1) imes (0,infty)$, where $Omega$ is a bounded open set of $mathbb{R}^n~(n leq 3)$, $alpha >0$ a real number, $Gamma_1$ a subset of the boundary $Gamma$ of $Omega$ and $h_i$ a real function defined on $Gamma_1 imes (0, infty)$.
topic Galerkin method
special basis
boundary stabilization
url http://ejde.math.txstate.edu/Volumes/2010/120/abstr.html
work_keys_str_mv AT aldotrajanolouredo nonlinearboundarydissipationforacoupledsystemofkleingordonequations
AT mmillamiranda nonlinearboundarydissipationforacoupledsystemofkleingordonequations
_version_ 1725462194839093248