Drag reduction due to recirculating bubble control using plasma actuator on a squareback model

Flow control on a squareback object which resembles many engineering related objects is believed to be highly beneficial. One of the flow characteristics behind the object, recirculating bubble, is known to play significant role in pressure distribution. Meanwhile, plasma actuator implementation on...

Full description

Bibliographic Details
Main Authors: Budiarso, Harinaldi, Karim Riza Farrash, Julian James
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Online Access:https://doi.org/10.1051/matecconf/201815401108
Description
Summary:Flow control on a squareback object which resembles many engineering related objects is believed to be highly beneficial. One of the flow characteristics behind the object, recirculating bubble, is known to play significant role in pressure distribution. Meanwhile, plasma actuator implementation on such object is still underdeveloped in application basis. This paper focuses on acquiring a deeper understanding of plasma actuator effect on flow phenomenon behind a squareback object, especially on its application to recirculating bubble control in order to reduce drag. The experiment was divided into drag measurement experiment and visualization experiment. The drag measurement result shows that plasma actuator succeeded on reducing drag up to 15.36% in the lowest Reynolds number. Meanwhile, the visualization experiment shows that plasma actuator has shifted the recirculating bubble position to be closer to the object’s wall.
ISSN:2261-236X