Combining a COI Mini-Barcode with Next-Generation Sequencing for Animal Origin Ingredients Identification in Processed Meat Product

For revealing animal species in complex or adulterated processed meat product, we presented a method combining a novel cytochrome oxidase I (COI) mini-barcode with next-generation sequencing (NGS), which identifies various animal species (swine, bovine, Caprinae, and some of fish, shrimp, and poultr...

Full description

Bibliographic Details
Main Authors: Yanyi Pan, Deyi Qiu, Jian Chen, Qiaoyun Yue
Format: Article
Language:English
Published: Hindawi-Wiley 2020-01-01
Series:Journal of Food Quality
Online Access:http://dx.doi.org/10.1155/2020/2907670
Description
Summary:For revealing animal species in complex or adulterated processed meat product, we presented a method combining a novel cytochrome oxidase I (COI) mini-barcode with next-generation sequencing (NGS), which identifies various animal species (swine, bovine, Caprinae, and some of fish, shrimp, and poultry) accurately and efficiently in processed meat products. We designed a universal primer based on 140 sequences from 51 edible animal species. A mixture of 12 species raw meat samples were identified with the clone sequencing and also with a mini-barcode- (136 bp) combined NGS method, respectively. The mini-barcode of these 12 species was 100% identical to the target species sequence by Sanger sequencing. Compared to the clone sequencing method, the NGS method is superior in accuracy, sensitivity, and detection efficiency. Various edible animal species were identified in the species level both in the mixed samples and the 7 heavily processed food products. Moreover, some unlabeled species and dubious contamination were detected as well.
ISSN:0146-9428
1745-4557