Computational Properties of General Indices on Random Networks

We perform a detailed (computational) scaling study of well-known general indices (the first and second variable Zagreb indices, <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>M</mi><mn>1</mn><mi>α</mi>...

Full description

Bibliographic Details
Main Authors: R. Aguilar-Sánchez, I. F. Herrera-González, J. A. Méndez-Bermúdez, José M. Sigarreta
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/8/1341
id doaj-a2db8714df224dff96efa5d033f85a4a
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author R. Aguilar-Sánchez
I. F. Herrera-González
J. A. Méndez-Bermúdez
José M. Sigarreta
spellingShingle R. Aguilar-Sánchez
I. F. Herrera-González
J. A. Méndez-Bermúdez
José M. Sigarreta
Computational Properties of General Indices on Random Networks
Symmetry
computational analysis of networks
general topological indices
Erdös–Rényi networks
random geometric graphs
author_facet R. Aguilar-Sánchez
I. F. Herrera-González
J. A. Méndez-Bermúdez
José M. Sigarreta
author_sort R. Aguilar-Sánchez
title Computational Properties of General Indices on Random Networks
title_short Computational Properties of General Indices on Random Networks
title_full Computational Properties of General Indices on Random Networks
title_fullStr Computational Properties of General Indices on Random Networks
title_full_unstemmed Computational Properties of General Indices on Random Networks
title_sort computational properties of general indices on random networks
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2020-08-01
description We perform a detailed (computational) scaling study of well-known general indices (the first and second variable Zagreb indices, <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>M</mi><mn>1</mn><mi>α</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>M</mi><mn>2</mn><mi>α</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and the general sum-connectivity index, <inline-formula><math display="inline"><semantics><mrow><msub><mi>χ</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) as well as of general versions of indices of interest: the general inverse sum indeg index <inline-formula><math display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><msub><mi>I</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and the general first geometric-arithmetic index <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><msub><mi>A</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (with <inline-formula><math display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>). We apply these indices on two models of random networks: Erdös–Rényi (ER) random networks <inline-formula><math display="inline"><semantics><mrow><msub><mi>G</mi><mrow><mi>ER</mi><mi></mi></mrow></msub><mrow><mo>(</mo><msub><mi>n</mi><mi>ER</mi></msub><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and random geometric (RG) graphs <inline-formula><math display="inline"><semantics><mrow><msub><mi>G</mi><mrow><mi>RG</mi></mrow></msub><mrow><mo>(</mo><msub><mi>n</mi><mi>RG</mi></msub><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The ER random networks are formed by <inline-formula><math display="inline"><semantics><msub><mi>n</mi><mrow><mi>ER</mi></mrow></msub></semantics></math></inline-formula> vertices connected independently with probability <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>; while the RG graphs consist of <inline-formula><math display="inline"><semantics><msub><mi>n</mi><mrow><mi>RG</mi></mrow></msub></semantics></math></inline-formula> vertices uniformly and independently distributed on the unit square, where two vertices are connected by an edge if their Euclidean distance is less or equal than the connection radius <inline-formula><math display="inline"><semantics><mrow><mi>r</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msqrt><mn>2</mn></msqrt><mo>]</mo></mrow></semantics></math></inline-formula>. Within a statistical random matrix theory approach, we show that the average values of the indices normalized to the network size scale with the average degree <inline-formula><math display="inline"><semantics><mfenced open="〈" close="〉"><mi>k</mi></mfenced></semantics></math></inline-formula> of the corresponding random network models, where <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="〈" close="〉"><msub><mi>k</mi><mrow><mi>ER</mi></mrow></msub></mfenced><mo>=</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>ER</mi></msub><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>p</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="〈" close="〉"><msub><mi>k</mi><mrow><mi>RG</mi></mrow></msub></mfenced><mo>=</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>RG</mi></msub><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>π</mi><msup><mi>r</mi><mn>2</mn></msup><mo>−</mo><mn>8</mn><msup><mi>r</mi><mn>3</mn></msup><mo>/</mo><mn>3</mn><mo>+</mo><msup><mi>r</mi><mn>4</mn></msup><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. That is, <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="〈" close="〉"><mi>X</mi><mo>(</mo><msub><mi>G</mi><mrow><mi>ER</mi></mrow></msub><mo>)</mo></mfenced><mo>/</mo><msub><mi>n</mi><mi>ER</mi></msub><mo>≈</mo><mfenced separators="" open="〈" close="〉"><mi>X</mi><mo>(</mo><msub><mi>G</mi><mrow><mi>RG</mi></mrow></msub><mo>)</mo></mfenced><mo>/</mo><msub><mi>n</mi><mi>RG</mi></msub></mrow></semantics></math></inline-formula> if <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="〈" close="〉"><msub><mi>k</mi><mrow><mi>ER</mi></mrow></msub></mfenced><mo>=</mo><mfenced separators="" open="〈" close="〉"><msub><mi>k</mi><mi>RG</mi></msub></mfenced></mrow></semantics></math></inline-formula>, with <i>X</i> representing any of the general indices listed above. With this work, we give a step forward in the scaling of topological indices since we have found a scaling law that covers different network models. Moreover, taking into account the symmetries of the topological indices we study here, we propose to establish their statistical analysis as a generic tool for studying average properties of random networks. In addition, we discuss the application of specific topological indices as complexity measures for random networks.
topic computational analysis of networks
general topological indices
Erdös–Rényi networks
random geometric graphs
url https://www.mdpi.com/2073-8994/12/8/1341
work_keys_str_mv AT raguilarsanchez computationalpropertiesofgeneralindicesonrandomnetworks
AT ifherreragonzalez computationalpropertiesofgeneralindicesonrandomnetworks
AT jamendezbermudez computationalpropertiesofgeneralindicesonrandomnetworks
AT josemsigarreta computationalpropertiesofgeneralindicesonrandomnetworks
_version_ 1724531751922958336
spelling doaj-a2db8714df224dff96efa5d033f85a4a2020-11-25T03:41:06ZengMDPI AGSymmetry2073-89942020-08-01121341134110.3390/sym12081341Computational Properties of General Indices on Random NetworksR. Aguilar-Sánchez0I. F. Herrera-González1J. A. Méndez-Bermúdez2José M. Sigarreta3Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, MexicoDepartamento de Ingeniería, Universidad Popular Autónoma del Estado de Puebla, Puebla 72410, MexicoDepartamento de Matemática Aplicada e Estatística, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo—Campus de São Carlos, Caixa Postal 668, São Carlos 13560-970, BrazilFacultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame No.54 Col. Garita, Acapulco 39650, MexicoWe perform a detailed (computational) scaling study of well-known general indices (the first and second variable Zagreb indices, <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>M</mi><mn>1</mn><mi>α</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msubsup><mi>M</mi><mn>2</mn><mi>α</mi></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, and the general sum-connectivity index, <inline-formula><math display="inline"><semantics><mrow><msub><mi>χ</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>) as well as of general versions of indices of interest: the general inverse sum indeg index <inline-formula><math display="inline"><semantics><mrow><mi>I</mi><mi>S</mi><msub><mi>I</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and the general first geometric-arithmetic index <inline-formula><math display="inline"><semantics><mrow><mi>G</mi><msub><mi>A</mi><mi>α</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> (with <inline-formula><math display="inline"><semantics><mrow><mi>α</mi><mo>∈</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>). We apply these indices on two models of random networks: Erdös–Rényi (ER) random networks <inline-formula><math display="inline"><semantics><mrow><msub><mi>G</mi><mrow><mi>ER</mi><mi></mi></mrow></msub><mrow><mo>(</mo><msub><mi>n</mi><mi>ER</mi></msub><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and random geometric (RG) graphs <inline-formula><math display="inline"><semantics><mrow><msub><mi>G</mi><mrow><mi>RG</mi></mrow></msub><mrow><mo>(</mo><msub><mi>n</mi><mi>RG</mi></msub><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The ER random networks are formed by <inline-formula><math display="inline"><semantics><msub><mi>n</mi><mrow><mi>ER</mi></mrow></msub></semantics></math></inline-formula> vertices connected independently with probability <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>; while the RG graphs consist of <inline-formula><math display="inline"><semantics><msub><mi>n</mi><mrow><mi>RG</mi></mrow></msub></semantics></math></inline-formula> vertices uniformly and independently distributed on the unit square, where two vertices are connected by an edge if their Euclidean distance is less or equal than the connection radius <inline-formula><math display="inline"><semantics><mrow><mi>r</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><msqrt><mn>2</mn></msqrt><mo>]</mo></mrow></semantics></math></inline-formula>. Within a statistical random matrix theory approach, we show that the average values of the indices normalized to the network size scale with the average degree <inline-formula><math display="inline"><semantics><mfenced open="〈" close="〉"><mi>k</mi></mfenced></semantics></math></inline-formula> of the corresponding random network models, where <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="〈" close="〉"><msub><mi>k</mi><mrow><mi>ER</mi></mrow></msub></mfenced><mo>=</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>ER</mi></msub><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mi>p</mi></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="〈" close="〉"><msub><mi>k</mi><mrow><mi>RG</mi></mrow></msub></mfenced><mo>=</mo><mrow><mo>(</mo><msub><mi>n</mi><mi>RG</mi></msub><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>π</mi><msup><mi>r</mi><mn>2</mn></msup><mo>−</mo><mn>8</mn><msup><mi>r</mi><mn>3</mn></msup><mo>/</mo><mn>3</mn><mo>+</mo><msup><mi>r</mi><mn>4</mn></msup><mo>/</mo><mn>2</mn><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. That is, <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="〈" close="〉"><mi>X</mi><mo>(</mo><msub><mi>G</mi><mrow><mi>ER</mi></mrow></msub><mo>)</mo></mfenced><mo>/</mo><msub><mi>n</mi><mi>ER</mi></msub><mo>≈</mo><mfenced separators="" open="〈" close="〉"><mi>X</mi><mo>(</mo><msub><mi>G</mi><mrow><mi>RG</mi></mrow></msub><mo>)</mo></mfenced><mo>/</mo><msub><mi>n</mi><mi>RG</mi></msub></mrow></semantics></math></inline-formula> if <inline-formula><math display="inline"><semantics><mrow><mfenced separators="" open="〈" close="〉"><msub><mi>k</mi><mrow><mi>ER</mi></mrow></msub></mfenced><mo>=</mo><mfenced separators="" open="〈" close="〉"><msub><mi>k</mi><mi>RG</mi></msub></mfenced></mrow></semantics></math></inline-formula>, with <i>X</i> representing any of the general indices listed above. With this work, we give a step forward in the scaling of topological indices since we have found a scaling law that covers different network models. Moreover, taking into account the symmetries of the topological indices we study here, we propose to establish their statistical analysis as a generic tool for studying average properties of random networks. In addition, we discuss the application of specific topological indices as complexity measures for random networks.https://www.mdpi.com/2073-8994/12/8/1341computational analysis of networksgeneral topological indicesErdös–Rényi networksrandom geometric graphs