Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011

Trends in the composition of the lower atmosphere (0–1500 m altitude) and surface air quality over the Baltimore/Washington area and surrounding states were investigated for the period from 1997 to 2011. We examined emissions of ozone precursors from monitors and inventories as well as ambient groun...

Full description

Bibliographic Details
Main Authors: H. He, J. W. Stehr, J. C. Hains, D. J. Krask, B. G. Doddridge, K. Y. Vinnikov, T. P. Canty, K. M. Hosley, R. J. Salawitch, H. M. Worden, R. R. Dickerson
Format: Article
Language:English
Published: Copernicus Publications 2013-08-01
Series:Atmospheric Chemistry and Physics
Online Access:http://www.atmos-chem-phys.net/13/7859/2013/acp-13-7859-2013.pdf
id doaj-a2c717cc197d4ccea0ad54d116b6e820
record_format Article
spelling doaj-a2c717cc197d4ccea0ad54d116b6e8202020-11-24T21:08:08ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242013-08-0113157859787410.5194/acp-13-7859-2013Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011H. HeJ. W. StehrJ. C. HainsD. J. KraskB. G. DoddridgeK. Y. VinnikovT. P. CantyK. M. HosleyR. J. SalawitchH. M. WordenR. R. DickersonTrends in the composition of the lower atmosphere (0–1500 m altitude) and surface air quality over the Baltimore/Washington area and surrounding states were investigated for the period from 1997 to 2011. We examined emissions of ozone precursors from monitors and inventories as well as ambient ground-level and aircraft measurements to characterize trends in air pollution. The US EPA Continuous Emissions Monitoring System (CEMS) program reported substantial decreases in emission of summertime nitrogen oxides (NO<sub>x</sub>) from power plants, up to &sim;80% in the mid-Atlantic States. These large reductions in emission of NO<sub>x</sub> are reflected in a sharp decrease of ground-level concentrations of NO<sub>x</sub> starting around 2003. The decreasing trend of tropospheric column CO observed by aircraft is &sim;0.8 Dobson unit (DU) per year, corresponding to &sim;35 ppbv yr<sup>−1</sup> in the lower troposphere (the surface to 1500 m above ground level). Satellite observations of long-term, near-surface CO show a &sim;40% decrease over western Maryland between 2000 and 2011; the same magnitude is indicated by aircraft measurements above these regions upwind of the Baltimore/Washington airshed. With decreasing emissions of ozone precursors, the ground-level ozone in the Baltimore/Washington area shows a 0.6 ppbv yr<sup>−1</sup> decrease in the past 15 yr. Since photochemical production of ozone is substantially influenced by ambient temperature, we introduce the climate penalty factor (CPF) into the trend analysis of long-term aircraft measurements. After compensating for inter-annual variations in temperature, historical aircraft measurements indicate that the daily net production of tropospheric ozone over the Baltimore/Washington area decreased from &sim;20 ppbv day<sup>−1</sup> in the late 1990s to &sim;7 ppbv day<sup>−1</sup> in the early 2010s during ozone season. A decrease in the long-term column ozone is observed as &sim;0.2 DU yr<sup>−1</sup> in the lowest 1500 m, corresponding to an improvement of &sim;1.3 ppbv yr<sup>−1</sup>. Our aircraft measurements were conducted on days when severe ozone pollution was forecasted, and these results represent the decreasing trend in high ozone events over the past 15 yr. Back trajectory cluster analysis demonstrates that emissions of air pollutants from Ohio and Pennsylvania through Maryland influence the column abundances of downwind ozone in the lower atmosphere. The trends in air pollutants reveal the success of regulations implemented over the past decades and the importance of region-wide emission controls in the eastern United States.http://www.atmos-chem-phys.net/13/7859/2013/acp-13-7859-2013.pdf
collection DOAJ
language English
format Article
sources DOAJ
author H. He
J. W. Stehr
J. C. Hains
D. J. Krask
B. G. Doddridge
K. Y. Vinnikov
T. P. Canty
K. M. Hosley
R. J. Salawitch
H. M. Worden
R. R. Dickerson
spellingShingle H. He
J. W. Stehr
J. C. Hains
D. J. Krask
B. G. Doddridge
K. Y. Vinnikov
T. P. Canty
K. M. Hosley
R. J. Salawitch
H. M. Worden
R. R. Dickerson
Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011
Atmospheric Chemistry and Physics
author_facet H. He
J. W. Stehr
J. C. Hains
D. J. Krask
B. G. Doddridge
K. Y. Vinnikov
T. P. Canty
K. M. Hosley
R. J. Salawitch
H. M. Worden
R. R. Dickerson
author_sort H. He
title Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011
title_short Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011
title_full Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011
title_fullStr Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011
title_full_unstemmed Trends in emissions and concentrations of air pollutants in the lower troposphere in the Baltimore/Washington airshed from 1997 to 2011
title_sort trends in emissions and concentrations of air pollutants in the lower troposphere in the baltimore/washington airshed from 1997 to 2011
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2013-08-01
description Trends in the composition of the lower atmosphere (0–1500 m altitude) and surface air quality over the Baltimore/Washington area and surrounding states were investigated for the period from 1997 to 2011. We examined emissions of ozone precursors from monitors and inventories as well as ambient ground-level and aircraft measurements to characterize trends in air pollution. The US EPA Continuous Emissions Monitoring System (CEMS) program reported substantial decreases in emission of summertime nitrogen oxides (NO<sub>x</sub>) from power plants, up to &sim;80% in the mid-Atlantic States. These large reductions in emission of NO<sub>x</sub> are reflected in a sharp decrease of ground-level concentrations of NO<sub>x</sub> starting around 2003. The decreasing trend of tropospheric column CO observed by aircraft is &sim;0.8 Dobson unit (DU) per year, corresponding to &sim;35 ppbv yr<sup>−1</sup> in the lower troposphere (the surface to 1500 m above ground level). Satellite observations of long-term, near-surface CO show a &sim;40% decrease over western Maryland between 2000 and 2011; the same magnitude is indicated by aircraft measurements above these regions upwind of the Baltimore/Washington airshed. With decreasing emissions of ozone precursors, the ground-level ozone in the Baltimore/Washington area shows a 0.6 ppbv yr<sup>−1</sup> decrease in the past 15 yr. Since photochemical production of ozone is substantially influenced by ambient temperature, we introduce the climate penalty factor (CPF) into the trend analysis of long-term aircraft measurements. After compensating for inter-annual variations in temperature, historical aircraft measurements indicate that the daily net production of tropospheric ozone over the Baltimore/Washington area decreased from &sim;20 ppbv day<sup>−1</sup> in the late 1990s to &sim;7 ppbv day<sup>−1</sup> in the early 2010s during ozone season. A decrease in the long-term column ozone is observed as &sim;0.2 DU yr<sup>−1</sup> in the lowest 1500 m, corresponding to an improvement of &sim;1.3 ppbv yr<sup>−1</sup>. Our aircraft measurements were conducted on days when severe ozone pollution was forecasted, and these results represent the decreasing trend in high ozone events over the past 15 yr. Back trajectory cluster analysis demonstrates that emissions of air pollutants from Ohio and Pennsylvania through Maryland influence the column abundances of downwind ozone in the lower atmosphere. The trends in air pollutants reveal the success of regulations implemented over the past decades and the importance of region-wide emission controls in the eastern United States.
url http://www.atmos-chem-phys.net/13/7859/2013/acp-13-7859-2013.pdf
work_keys_str_mv AT hhe trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT jwstehr trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT jchains trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT djkrask trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT bgdoddridge trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT kyvinnikov trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT tpcanty trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT kmhosley trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT rjsalawitch trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT hmworden trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
AT rrdickerson trendsinemissionsandconcentrationsofairpollutantsinthelowertroposphereinthebaltimorewashingtonairshedfrom1997to2011
_version_ 1716760747893063680