Mapping carbon monoxide pollution from space down to city scales with daily global coverage
<p>On 13 October 2017, the European Space Agency (ESA) successfully launched the Sentinel-5 Precursor satellite with the Tropospheric Monitoring Instrument (TROPOMI) as its single payload. TROPOMI is the first of ESA's atmospheric composition Sentinel missions, which will provide com...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2018-10-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://www.atmos-meas-tech.net/11/5507/2018/amt-11-5507-2018.pdf |
Summary: | <p>On 13 October 2017, the European Space Agency (ESA) successfully
launched the Sentinel-5 Precursor satellite with the Tropospheric
Monitoring Instrument (TROPOMI) as its single payload. TROPOMI is
the first of ESA's atmospheric composition Sentinel missions, which
will provide complete long-term records of atmospheric trace gases
for the coming 30 years as a contribution to the European Union's
Earth Observing program Copernicus. One of TROPOMI's primary
products is atmospheric carbon monoxide (CO). It is observed with daily global
coverage and a high spatial resolution of 7×7 km<sup>2</sup>.
The moderate atmospheric resistance time and the low background
concentration leads to localized pollution hotspots of CO and allows
the tracking of the atmospheric transport of pollution on regional to global
scales. In this contribution, we
demonstrate the groundbreaking performance of the TROPOMI CO product, sensing
CO enhancements above cities and industrial areas and tracking, with
daily coverage, the atmospheric transport of pollution from biomass
burning regions. The CO data product is validated with two months
of Fourier-transform spectroscopy (FTS) measurements at nine
ground-based stations operated by the Total Carbon Column Observing
Network (TCCON). We found a good agreement between both datasets with a mean bias
of 6 ppb (average of individual station biases) for both clear-sky and
cloudy TROPOMI CO retrievals. Together with the corresponding
standard deviation of the individual station biases of 3.8 ppb for
clear-sky and 4.0 ppb for cloudy sky, it indicates that the CO data
product is already well within the mission requirement.</p> |
---|---|
ISSN: | 1867-1381 1867-8548 |