Revisiting the Karyotypes of Alligators and Caimans (Crocodylia, Alligatoridae) after a Half-Century Delay: Bridging the Gap in the Chromosomal Evolution of Reptiles

Although crocodilians have attracted enormous attention in other research fields, from the cytogenetic point of view, this group remains understudied. Here, we analyzed the karyotypes of eight species formally described from the Alligatoridae family using differential staining, fluorescence in situ...

Full description

Bibliographic Details
Main Authors: Vanessa C. S. Oliveira, Marie Altmanová, Patrik F. Viana, Tariq Ezaz, Luiz A. C. Bertollo, Petr Ráb, Thomas Liehr, Ahmed Al-Rikabi, Eliana Feldberg, Terumi Hatanaka, Sebastian Scholz, Alexander Meurer, Marcelo de Bello Cioffi
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Cells
Subjects:
Online Access:https://www.mdpi.com/2073-4409/10/6/1397
Description
Summary:Although crocodilians have attracted enormous attention in other research fields, from the cytogenetic point of view, this group remains understudied. Here, we analyzed the karyotypes of eight species formally described from the Alligatoridae family using differential staining, fluorescence in situ hybridization with rDNA and repetitive motifs as a probe, whole chromosome painting (WCP), and comparative genome hybridization. All Caimaninae species have a diploid chromosome number (2n) 42 and karyotypes dominated by acrocentric chromosomes, in contrast to both species of Alligatorinae, which have 2n = 32 and karyotypes that are predominantly metacentric, suggesting fusion/fission rearrangements. Our WCP results supported this scenario by revealing the homeology of the largest metacentric pair present in both <i>Alligator</i> spp. with two smaller pairs of acrocentrics in Caimaninae species. The clusters of 18S rDNA were found on one chromosome pair in all species, except for <i>Paleosuchus</i> spp., which possessed three chromosome pairs bearing these sites. Similarly, comparative genomic hybridization demonstrated an advanced stage of sequence divergence among the caiman genomes, with <i>Paleosuchus</i> standing out as the most divergent. Thus, although Alligatoridae exhibited rather low species diversity and some level of karyotype stasis, their genomic content indicates that they are not as conserved as previously thought. These new data deepen the discussion of cytotaxonomy in this family.
ISSN:2073-4409