Application of p-regularity theory to the Duffing equation

Abstract The paper studies a solution existence problem of the nonlinear Duffing equation of the form F ( x , μ , β ) = x ″ + x + μ x 3 − β sin t = 0 , β > 0 , μ ≠ 0 , $$ F(x,\mu, \beta)=x''+x+\mu x^{3}-\beta\sin t = 0,\quad \beta > 0, \mu\neq0, $$ where F : C 2 [ 0 , 2 π ] × R × R →...

Full description

Bibliographic Details
Main Authors: Beata Medak, Alexey A Tret’yakov
Format: Article
Language:English
Published: SpringerOpen 2017-06-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-017-0815-8
id doaj-a29d7606ded34d469abbed80aa6a24bd
record_format Article
spelling doaj-a29d7606ded34d469abbed80aa6a24bd2020-11-25T00:53:41ZengSpringerOpenBoundary Value Problems1687-27702017-06-01201711910.1186/s13661-017-0815-8Application of p-regularity theory to the Duffing equationBeata Medak0Alexey A Tret’yakov1Siedlce University of Natural Sciences and HumanitiesSiedlce University of Natural Sciences and HumanitiesAbstract The paper studies a solution existence problem of the nonlinear Duffing equation of the form F ( x , μ , β ) = x ″ + x + μ x 3 − β sin t = 0 , β > 0 , μ ≠ 0 , $$ F(x,\mu, \beta)=x''+x+\mu x^{3}-\beta\sin t = 0,\quad \beta > 0, \mu\neq0, $$ where F : C 2 [ 0 , 2 π ] × R × R → C [ 0 , 2 π ] $F: \mathcal{C}^{2}[0,2\pi]\times\mathbb{R}\times \mathbb{R}\rightarrow\mathcal{C}[0,2\pi]$ and x ( 0 ) = x ( 2 π ) = 0 $x(0)=x(2\pi)=0$ using the p-regularity theory.http://link.springer.com/article/10.1186/s13661-017-0815-8p-regularityp-factor operatorDuffing equationnonlinear boundary value problems
collection DOAJ
language English
format Article
sources DOAJ
author Beata Medak
Alexey A Tret’yakov
spellingShingle Beata Medak
Alexey A Tret’yakov
Application of p-regularity theory to the Duffing equation
Boundary Value Problems
p-regularity
p-factor operator
Duffing equation
nonlinear boundary value problems
author_facet Beata Medak
Alexey A Tret’yakov
author_sort Beata Medak
title Application of p-regularity theory to the Duffing equation
title_short Application of p-regularity theory to the Duffing equation
title_full Application of p-regularity theory to the Duffing equation
title_fullStr Application of p-regularity theory to the Duffing equation
title_full_unstemmed Application of p-regularity theory to the Duffing equation
title_sort application of p-regularity theory to the duffing equation
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2017-06-01
description Abstract The paper studies a solution existence problem of the nonlinear Duffing equation of the form F ( x , μ , β ) = x ″ + x + μ x 3 − β sin t = 0 , β > 0 , μ ≠ 0 , $$ F(x,\mu, \beta)=x''+x+\mu x^{3}-\beta\sin t = 0,\quad \beta > 0, \mu\neq0, $$ where F : C 2 [ 0 , 2 π ] × R × R → C [ 0 , 2 π ] $F: \mathcal{C}^{2}[0,2\pi]\times\mathbb{R}\times \mathbb{R}\rightarrow\mathcal{C}[0,2\pi]$ and x ( 0 ) = x ( 2 π ) = 0 $x(0)=x(2\pi)=0$ using the p-regularity theory.
topic p-regularity
p-factor operator
Duffing equation
nonlinear boundary value problems
url http://link.springer.com/article/10.1186/s13661-017-0815-8
work_keys_str_mv AT beatamedak applicationofpregularitytheorytotheduffingequation
AT alexeyatretyakov applicationofpregularitytheorytotheduffingequation
_version_ 1725237034415554560