Application of p-regularity theory to the Duffing equation
Abstract The paper studies a solution existence problem of the nonlinear Duffing equation of the form F ( x , μ , β ) = x ″ + x + μ x 3 − β sin t = 0 , β > 0 , μ ≠ 0 , $$ F(x,\mu, \beta)=x''+x+\mu x^{3}-\beta\sin t = 0,\quad \beta > 0, \mu\neq0, $$ where F : C 2 [ 0 , 2 π ] × R × R →...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-06-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-017-0815-8 |
id |
doaj-a29d7606ded34d469abbed80aa6a24bd |
---|---|
record_format |
Article |
spelling |
doaj-a29d7606ded34d469abbed80aa6a24bd2020-11-25T00:53:41ZengSpringerOpenBoundary Value Problems1687-27702017-06-01201711910.1186/s13661-017-0815-8Application of p-regularity theory to the Duffing equationBeata Medak0Alexey A Tret’yakov1Siedlce University of Natural Sciences and HumanitiesSiedlce University of Natural Sciences and HumanitiesAbstract The paper studies a solution existence problem of the nonlinear Duffing equation of the form F ( x , μ , β ) = x ″ + x + μ x 3 − β sin t = 0 , β > 0 , μ ≠ 0 , $$ F(x,\mu, \beta)=x''+x+\mu x^{3}-\beta\sin t = 0,\quad \beta > 0, \mu\neq0, $$ where F : C 2 [ 0 , 2 π ] × R × R → C [ 0 , 2 π ] $F: \mathcal{C}^{2}[0,2\pi]\times\mathbb{R}\times \mathbb{R}\rightarrow\mathcal{C}[0,2\pi]$ and x ( 0 ) = x ( 2 π ) = 0 $x(0)=x(2\pi)=0$ using the p-regularity theory.http://link.springer.com/article/10.1186/s13661-017-0815-8p-regularityp-factor operatorDuffing equationnonlinear boundary value problems |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Beata Medak Alexey A Tret’yakov |
spellingShingle |
Beata Medak Alexey A Tret’yakov Application of p-regularity theory to the Duffing equation Boundary Value Problems p-regularity p-factor operator Duffing equation nonlinear boundary value problems |
author_facet |
Beata Medak Alexey A Tret’yakov |
author_sort |
Beata Medak |
title |
Application of p-regularity theory to the Duffing equation |
title_short |
Application of p-regularity theory to the Duffing equation |
title_full |
Application of p-regularity theory to the Duffing equation |
title_fullStr |
Application of p-regularity theory to the Duffing equation |
title_full_unstemmed |
Application of p-regularity theory to the Duffing equation |
title_sort |
application of p-regularity theory to the duffing equation |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2017-06-01 |
description |
Abstract The paper studies a solution existence problem of the nonlinear Duffing equation of the form F ( x , μ , β ) = x ″ + x + μ x 3 − β sin t = 0 , β > 0 , μ ≠ 0 , $$ F(x,\mu, \beta)=x''+x+\mu x^{3}-\beta\sin t = 0,\quad \beta > 0, \mu\neq0, $$ where F : C 2 [ 0 , 2 π ] × R × R → C [ 0 , 2 π ] $F: \mathcal{C}^{2}[0,2\pi]\times\mathbb{R}\times \mathbb{R}\rightarrow\mathcal{C}[0,2\pi]$ and x ( 0 ) = x ( 2 π ) = 0 $x(0)=x(2\pi)=0$ using the p-regularity theory. |
topic |
p-regularity p-factor operator Duffing equation nonlinear boundary value problems |
url |
http://link.springer.com/article/10.1186/s13661-017-0815-8 |
work_keys_str_mv |
AT beatamedak applicationofpregularitytheorytotheduffingequation AT alexeyatretyakov applicationofpregularitytheorytotheduffingequation |
_version_ |
1725237034415554560 |