Effect of Carbonation on the Water Resistance of Steel Slag—Magnesium Oxysulfate (MOS) Cement Blends

Magnesium oxysulfate (MOS) cement has the advantages of lightweightedness, high strength, and low thermal conductivity, but the utilization of MOS cement is limited due to low water resistance. This paper studied the influence of steel slag and CO<sub>2</sub> treatment on the compressive...

Full description

Bibliographic Details
Main Authors: Zhiqi Hu, Yan Guan, Jun Chang, Wanli Bi, Tingting Zhang
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/21/5006
Description
Summary:Magnesium oxysulfate (MOS) cement has the advantages of lightweightedness, high strength, and low thermal conductivity, but the utilization of MOS cement is limited due to low water resistance. This paper studied the influence of steel slag and CO<sub>2</sub> treatment on the compressive strength and water resistance of MOS cement. The hydration products and microstructures were characterized by X-ray diffraction (XRD), thermogravimetric analysis–differential scanning calorimetry (TG–DSC), scanning electron spectroscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results showed that the strength of MOS cement reached 89.7 MPa with steel slag and CO<sub>2</sub> treatment; the water-resistance coefficients of the control and samples containing 10%, 20%, and 30% reached 0.91, 0.81, 1.01, and 1.08 MPa, respectively. The improvement in the strength and water resistance coefficients was because of carbonation that accelerated the hydration of C<sub>2</sub>S in the steel slag and formed a Ca–Mg–C amorphous substance. The carbonation products contributed to better water stability and denser matrix denser while inhibiting the hydration of MgO, which led to improving the water resistance of the sample.
ISSN:1996-1944