Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness

We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows...

Full description

Bibliographic Details
Main Authors: Mariem Ben Abdallah, Jihene Malek, Ahmad Taher Azar, Philippe Montesinos, Hafedh Belmabrouk, Julio Esclarín Monreal, Karl Krissian
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/2015/519024
id doaj-a26174173546488d974db4d349c000d0
record_format Article
spelling doaj-a26174173546488d974db4d349c000d02020-11-24T22:57:45ZengHindawi LimitedInternational Journal of Biomedical Imaging1687-41881687-41962015-01-01201510.1155/2015/519024519024Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale MedialnessMariem Ben Abdallah0Jihene Malek1Ahmad Taher Azar2Philippe Montesinos3Hafedh Belmabrouk4Julio Esclarín Monreal5Karl Krissian6Faculty of Sciences, Electronics and Microelectronics Laboratory, Monastir University, 5019 Monastir, TunisiaFaculty of Sciences, Electronics and Microelectronics Laboratory, Monastir University, 5019 Monastir, TunisiaFaculty of Computers and Information, Benha University, Benha 13511, EgyptInstitute of Mines and Ales, Laboratory of Computer and Production Engineering, 30319 Alès, FranceFaculty of Sciences, Electronics and Microelectronics Laboratory, Monastir University, 5019 Monastir, TunisiaImaging Technology Center (CTIM), Las Palmas-Gran Canaria University, 35017 Las Palmas de Gran Canaria, SpainImaging Technology Center (CTIM), Las Palmas-Gran Canaria University, 35017 Las Palmas de Gran Canaria, SpainWe propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows detecting all vessels having similar dimensions at a chosen scale. Computing the individual image maps requires different steps. First, a number of points are preselected using the eigenvalues of the Hessian matrix. These points are expected to be near to a vessel axis. Then, for each preselected point, the response map is computed from gradient information of the image at the current scale. Finally, the multiscale image map is derived after combining the individual image maps at different scales (sizes). Two publicly available datasets have been used to test the performance of the suggested method. The main dataset is the STARE project’s dataset and the second one is the DRIVE dataset. The experimental results, applied on the STARE dataset, show a maximum accuracy average of around 94.02%. Also, when performed on the DRIVE database, the maximum accuracy average reaches 91.55%.http://dx.doi.org/10.1155/2015/519024
collection DOAJ
language English
format Article
sources DOAJ
author Mariem Ben Abdallah
Jihene Malek
Ahmad Taher Azar
Philippe Montesinos
Hafedh Belmabrouk
Julio Esclarín Monreal
Karl Krissian
spellingShingle Mariem Ben Abdallah
Jihene Malek
Ahmad Taher Azar
Philippe Montesinos
Hafedh Belmabrouk
Julio Esclarín Monreal
Karl Krissian
Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
International Journal of Biomedical Imaging
author_facet Mariem Ben Abdallah
Jihene Malek
Ahmad Taher Azar
Philippe Montesinos
Hafedh Belmabrouk
Julio Esclarín Monreal
Karl Krissian
author_sort Mariem Ben Abdallah
title Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_short Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_full Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_fullStr Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_full_unstemmed Automatic Extraction of Blood Vessels in the Retinal Vascular Tree Using Multiscale Medialness
title_sort automatic extraction of blood vessels in the retinal vascular tree using multiscale medialness
publisher Hindawi Limited
series International Journal of Biomedical Imaging
issn 1687-4188
1687-4196
publishDate 2015-01-01
description We propose an algorithm for vessel extraction in retinal images. The first step consists of applying anisotropic diffusion filtering in the initial vessel network in order to restore disconnected vessel lines and eliminate noisy lines. In the second step, a multiscale line-tracking procedure allows detecting all vessels having similar dimensions at a chosen scale. Computing the individual image maps requires different steps. First, a number of points are preselected using the eigenvalues of the Hessian matrix. These points are expected to be near to a vessel axis. Then, for each preselected point, the response map is computed from gradient information of the image at the current scale. Finally, the multiscale image map is derived after combining the individual image maps at different scales (sizes). Two publicly available datasets have been used to test the performance of the suggested method. The main dataset is the STARE project’s dataset and the second one is the DRIVE dataset. The experimental results, applied on the STARE dataset, show a maximum accuracy average of around 94.02%. Also, when performed on the DRIVE database, the maximum accuracy average reaches 91.55%.
url http://dx.doi.org/10.1155/2015/519024
work_keys_str_mv AT mariembenabdallah automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT jihenemalek automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT ahmadtaherazar automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT philippemontesinos automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT hafedhbelmabrouk automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT julioesclarinmonreal automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
AT karlkrissian automaticextractionofbloodvesselsintheretinalvasculartreeusingmultiscalemedialness
_version_ 1725649358451376128