Monitoring the Interannual Spatiotemporal Changes in the Land Surface Thermal Environment in Both Urban and Rural Regions from 2003 to 2013 in China Based on Remote Sensing

The thermal environment is closely related to human well-being. Diurnal and seasonal variations in surface urban heat islands (SUHIs) have been extensively studied. Nevertheless, interannual changes in SUHIs as well as in land surface temperatures (LSTs) in cities and their corresponding villages re...

Full description

Bibliographic Details
Main Authors: Yuanzheng Li, Lan Wang, Liping Zhang, Qing Wang
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2019/8347659
id doaj-a21b09d885ca4048917e18c395e6899a
record_format Article
spelling doaj-a21b09d885ca4048917e18c395e6899a2020-11-25T00:46:01ZengHindawi LimitedAdvances in Meteorology1687-93091687-93172019-01-01201910.1155/2019/83476598347659Monitoring the Interannual Spatiotemporal Changes in the Land Surface Thermal Environment in Both Urban and Rural Regions from 2003 to 2013 in China Based on Remote SensingYuanzheng Li0Lan Wang1Liping Zhang2Qing Wang3School of Resources and Environment, Henan University of Economics and Law, Zhengzhou 450046, ChinaKey Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, ChinaCenter for Environmental Zoning, Chinese Academy for Environmental Planning, Ministry of Environmental Protection of China, Beijing 100012, ChinaGuangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, ChinaThe thermal environment is closely related to human well-being. Diurnal and seasonal variations in surface urban heat islands (SUHIs) have been extensively studied. Nevertheless, interannual changes in SUHIs as well as in land surface temperatures (LSTs) in cities and their corresponding villages remain poorly understood, particularly using data from several continuous years to analyse change rates and corresponding significance levels. Using Aqua/Terra moderate resolution imaging spectroradiometer (MODIS) data for 2003–2013, we explored not only the interannual changes in annual and seasonal mean LSTs in rural and urban regions which were identified based on modified criteria, but also the SUHI intensities (SUHIIs) for these cities. The results showed that most of LSTs and SUHIIs did not change significantly (p≥0.05). Their changes exhibited clear spatiotemporal agglomeration and variation laws. The rural region LST change rates, which exhibited significant changes, were generally highest in the summer, with most of values of 0.1–0.5°C (yr−1) during the daytime across China, except for the Xinjiang autonomous regions, and 0.1–0.2°C (yr−1) during the night-time. The rates were lowest in the winter, with most of values of −0.4 to −0.1°C (yr−1). The rates of daytime SUHIIs with significant changes were generally highest in the summer, with most of values of 0.1–0.3°C (yr−1), and lowest in the winter, even with most of values of −0.4 to −0.1°C (yr−1) in northern central China. During the night-time, most of rates were 0.0–0.1°C (yr−1). In China, most of the changes in the surface thermal environment were harmful to humans at both large national and local urban scales. The changes could lower thermal comfort levels, harm human health, affect human reproduction rates and lives, and increase the energy consumed for refrigeration or heating, thereby increase emissions of greenhouse gases.http://dx.doi.org/10.1155/2019/8347659
collection DOAJ
language English
format Article
sources DOAJ
author Yuanzheng Li
Lan Wang
Liping Zhang
Qing Wang
spellingShingle Yuanzheng Li
Lan Wang
Liping Zhang
Qing Wang
Monitoring the Interannual Spatiotemporal Changes in the Land Surface Thermal Environment in Both Urban and Rural Regions from 2003 to 2013 in China Based on Remote Sensing
Advances in Meteorology
author_facet Yuanzheng Li
Lan Wang
Liping Zhang
Qing Wang
author_sort Yuanzheng Li
title Monitoring the Interannual Spatiotemporal Changes in the Land Surface Thermal Environment in Both Urban and Rural Regions from 2003 to 2013 in China Based on Remote Sensing
title_short Monitoring the Interannual Spatiotemporal Changes in the Land Surface Thermal Environment in Both Urban and Rural Regions from 2003 to 2013 in China Based on Remote Sensing
title_full Monitoring the Interannual Spatiotemporal Changes in the Land Surface Thermal Environment in Both Urban and Rural Regions from 2003 to 2013 in China Based on Remote Sensing
title_fullStr Monitoring the Interannual Spatiotemporal Changes in the Land Surface Thermal Environment in Both Urban and Rural Regions from 2003 to 2013 in China Based on Remote Sensing
title_full_unstemmed Monitoring the Interannual Spatiotemporal Changes in the Land Surface Thermal Environment in Both Urban and Rural Regions from 2003 to 2013 in China Based on Remote Sensing
title_sort monitoring the interannual spatiotemporal changes in the land surface thermal environment in both urban and rural regions from 2003 to 2013 in china based on remote sensing
publisher Hindawi Limited
series Advances in Meteorology
issn 1687-9309
1687-9317
publishDate 2019-01-01
description The thermal environment is closely related to human well-being. Diurnal and seasonal variations in surface urban heat islands (SUHIs) have been extensively studied. Nevertheless, interannual changes in SUHIs as well as in land surface temperatures (LSTs) in cities and their corresponding villages remain poorly understood, particularly using data from several continuous years to analyse change rates and corresponding significance levels. Using Aqua/Terra moderate resolution imaging spectroradiometer (MODIS) data for 2003–2013, we explored not only the interannual changes in annual and seasonal mean LSTs in rural and urban regions which were identified based on modified criteria, but also the SUHI intensities (SUHIIs) for these cities. The results showed that most of LSTs and SUHIIs did not change significantly (p≥0.05). Their changes exhibited clear spatiotemporal agglomeration and variation laws. The rural region LST change rates, which exhibited significant changes, were generally highest in the summer, with most of values of 0.1–0.5°C (yr−1) during the daytime across China, except for the Xinjiang autonomous regions, and 0.1–0.2°C (yr−1) during the night-time. The rates were lowest in the winter, with most of values of −0.4 to −0.1°C (yr−1). The rates of daytime SUHIIs with significant changes were generally highest in the summer, with most of values of 0.1–0.3°C (yr−1), and lowest in the winter, even with most of values of −0.4 to −0.1°C (yr−1) in northern central China. During the night-time, most of rates were 0.0–0.1°C (yr−1). In China, most of the changes in the surface thermal environment were harmful to humans at both large national and local urban scales. The changes could lower thermal comfort levels, harm human health, affect human reproduction rates and lives, and increase the energy consumed for refrigeration or heating, thereby increase emissions of greenhouse gases.
url http://dx.doi.org/10.1155/2019/8347659
work_keys_str_mv AT yuanzhengli monitoringtheinterannualspatiotemporalchangesinthelandsurfacethermalenvironmentinbothurbanandruralregionsfrom2003to2013inchinabasedonremotesensing
AT lanwang monitoringtheinterannualspatiotemporalchangesinthelandsurfacethermalenvironmentinbothurbanandruralregionsfrom2003to2013inchinabasedonremotesensing
AT lipingzhang monitoringtheinterannualspatiotemporalchangesinthelandsurfacethermalenvironmentinbothurbanandruralregionsfrom2003to2013inchinabasedonremotesensing
AT qingwang monitoringtheinterannualspatiotemporalchangesinthelandsurfacethermalenvironmentinbothurbanandruralregionsfrom2003to2013inchinabasedonremotesensing
_version_ 1725267587612278784