Pygpc: A sensitivity and uncertainty analysis toolbox for Python
We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non-intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their leg...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-01-01
|
Series: | SoftwareX |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2352711020300078 |
id |
doaj-a1f6dc8eb3624d06adc8b895e88c1d07 |
---|---|
record_format |
Article |
spelling |
doaj-a1f6dc8eb3624d06adc8b895e88c1d072020-11-25T02:50:00ZengElsevierSoftwareX2352-71102020-01-0111Pygpc: A sensitivity and uncertainty analysis toolbox for PythonKonstantin Weise0Lucas Poßner1Erik Müller2Richard Gast3Thomas R. Knösche4Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics Group, Helmholtzplatz 2, 98693 Ilmenau, Germany; Corresponding author at: Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.Leipzig University of Applied Sciences, Institute for Electronics and Biomedical Information Technology, Wächterstr. 13, 04107 Leipzig, GermanyLeipzig University of Applied Sciences, Institute for Electronics and Biomedical Information Technology, Wächterstr. 13, 04107 Leipzig, GermanyMethods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, GermanyMethods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Gustav-Kirchhoff-Straße 2, 98693 Ilmenau, GermanyWe present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non-intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient-based sensitivity measures and Sobol indices to reveal the relative importance of model parameters.http://www.sciencedirect.com/science/article/pii/S2352711020300078Sensitivity analysisUncertainty analysisPolynomial chaos |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Konstantin Weise Lucas Poßner Erik Müller Richard Gast Thomas R. Knösche |
spellingShingle |
Konstantin Weise Lucas Poßner Erik Müller Richard Gast Thomas R. Knösche Pygpc: A sensitivity and uncertainty analysis toolbox for Python SoftwareX Sensitivity analysis Uncertainty analysis Polynomial chaos |
author_facet |
Konstantin Weise Lucas Poßner Erik Müller Richard Gast Thomas R. Knösche |
author_sort |
Konstantin Weise |
title |
Pygpc: A sensitivity and uncertainty analysis toolbox for Python |
title_short |
Pygpc: A sensitivity and uncertainty analysis toolbox for Python |
title_full |
Pygpc: A sensitivity and uncertainty analysis toolbox for Python |
title_fullStr |
Pygpc: A sensitivity and uncertainty analysis toolbox for Python |
title_full_unstemmed |
Pygpc: A sensitivity and uncertainty analysis toolbox for Python |
title_sort |
pygpc: a sensitivity and uncertainty analysis toolbox for python |
publisher |
Elsevier |
series |
SoftwareX |
issn |
2352-7110 |
publishDate |
2020-01-01 |
description |
We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non-intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient-based sensitivity measures and Sobol indices to reveal the relative importance of model parameters. |
topic |
Sensitivity analysis Uncertainty analysis Polynomial chaos |
url |
http://www.sciencedirect.com/science/article/pii/S2352711020300078 |
work_keys_str_mv |
AT konstantinweise pygpcasensitivityanduncertaintyanalysistoolboxforpython AT lucaspoßner pygpcasensitivityanduncertaintyanalysistoolboxforpython AT erikmuller pygpcasensitivityanduncertaintyanalysistoolboxforpython AT richardgast pygpcasensitivityanduncertaintyanalysistoolboxforpython AT thomasrknosche pygpcasensitivityanduncertaintyanalysistoolboxforpython |
_version_ |
1724740786613911552 |