Pygpc: A sensitivity and uncertainty analysis toolbox for Python

We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non-intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their leg...

Full description

Bibliographic Details
Main Authors: Konstantin Weise, Lucas Poßner, Erik Müller, Richard Gast, Thomas R. Knösche
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:SoftwareX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352711020300078
id doaj-a1f6dc8eb3624d06adc8b895e88c1d07
record_format Article
spelling doaj-a1f6dc8eb3624d06adc8b895e88c1d072020-11-25T02:50:00ZengElsevierSoftwareX2352-71102020-01-0111Pygpc: A sensitivity and uncertainty analysis toolbox for PythonKonstantin Weise0Lucas Poßner1Erik Müller2Richard Gast3Thomas R. Knösche4Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Advanced Electromagnetics Group, Helmholtzplatz 2, 98693 Ilmenau, Germany; Corresponding author at: Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany.Leipzig University of Applied Sciences, Institute for Electronics and Biomedical Information Technology, Wächterstr. 13, 04107 Leipzig, GermanyLeipzig University of Applied Sciences, Institute for Electronics and Biomedical Information Technology, Wächterstr. 13, 04107 Leipzig, GermanyMethods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, GermanyMethods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany; Technische Universität Ilmenau, Institute of Biomedical Engineering and Informatics, Gustav-Kirchhoff-Straße 2, 98693 Ilmenau, GermanyWe present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non-intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient-based sensitivity measures and Sobol indices to reveal the relative importance of model parameters.http://www.sciencedirect.com/science/article/pii/S2352711020300078Sensitivity analysisUncertainty analysisPolynomial chaos
collection DOAJ
language English
format Article
sources DOAJ
author Konstantin Weise
Lucas Poßner
Erik Müller
Richard Gast
Thomas R. Knösche
spellingShingle Konstantin Weise
Lucas Poßner
Erik Müller
Richard Gast
Thomas R. Knösche
Pygpc: A sensitivity and uncertainty analysis toolbox for Python
SoftwareX
Sensitivity analysis
Uncertainty analysis
Polynomial chaos
author_facet Konstantin Weise
Lucas Poßner
Erik Müller
Richard Gast
Thomas R. Knösche
author_sort Konstantin Weise
title Pygpc: A sensitivity and uncertainty analysis toolbox for Python
title_short Pygpc: A sensitivity and uncertainty analysis toolbox for Python
title_full Pygpc: A sensitivity and uncertainty analysis toolbox for Python
title_fullStr Pygpc: A sensitivity and uncertainty analysis toolbox for Python
title_full_unstemmed Pygpc: A sensitivity and uncertainty analysis toolbox for Python
title_sort pygpc: a sensitivity and uncertainty analysis toolbox for python
publisher Elsevier
series SoftwareX
issn 2352-7110
publishDate 2020-01-01
description We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non-intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient-based sensitivity measures and Sobol indices to reveal the relative importance of model parameters.
topic Sensitivity analysis
Uncertainty analysis
Polynomial chaos
url http://www.sciencedirect.com/science/article/pii/S2352711020300078
work_keys_str_mv AT konstantinweise pygpcasensitivityanduncertaintyanalysistoolboxforpython
AT lucaspoßner pygpcasensitivityanduncertaintyanalysistoolboxforpython
AT erikmuller pygpcasensitivityanduncertaintyanalysistoolboxforpython
AT richardgast pygpcasensitivityanduncertaintyanalysistoolboxforpython
AT thomasrknosche pygpcasensitivityanduncertaintyanalysistoolboxforpython
_version_ 1724740786613911552