Spectrum of J-frame operators
A \(J\)-frame is a frame \(\mathcal{F}\) for a Krein space \((\mathcal{H},[\cdot,\cdot ])\) which is compatible with the indefinite inner product \([\cdot,\cdot ]\) in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in \(\mathcal{H}\)...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2018-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol38/5/art/opuscula_math_3828.pdf |
id |
doaj-a1ecd68ab3e24f13b2bcd76c3231396b |
---|---|
record_format |
Article |
spelling |
doaj-a1ecd68ab3e24f13b2bcd76c3231396b2020-11-24T23:24:34ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742018-01-01385623649https://doi.org/10.7494/OpMath.2018.38.5.6233828Spectrum of J-frame operatorsJuan Giribet0Matthias Langer1Leslie Leben2Alejandra Maestripieri3Francisco Martínez Pería4Carsten Trunk5Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, (1063) Buenos Aires, ArgentinaUniversity of Strathclyde, Department of Mathematics and Statistics, 26 Richmond Street, Glasgow G1 1XH, United KingdomTechnische Universität Ilmenau, Institut für Mathematik, Postfach 100565, D-98684 Ilmenau, GermanyFacultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, (1063) Buenos Aires, ArgentinaCentro de Matemática de La Plata (CeMaLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 172, (1900) La Plata, ArgentinaInstituto Argentino de Matemática "Alberto P. Calderón" (CONICET), Saavedra 15, Piso 3, (1083) Buenos Aires, ArgentinaA \(J\)-frame is a frame \(\mathcal{F}\) for a Krein space \((\mathcal{H},[\cdot,\cdot ])\) which is compatible with the indefinite inner product \([\cdot,\cdot ]\) in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in \(\mathcal{H}\). With every \(J\)-frame the so-called \(J\)-frame operator is associated, which is a self-adjoint operator in the Krein space \(\mathcal{H}\). The \(J\)-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of \(J\)-frame operators in a Krein space by a \(2\times 2\) block operator representation. The \(J\)-frame bounds of \(\mathcal{F}\) are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the \(2\times 2\) block representation. Moreover, this \(2\times 2\) block representation is utilized to obtain enclosures for the spectrum of \(J\)-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all \(J\)-frames associated with a given \(J\)-frame operator.http://www.opuscula.agh.edu.pl/vol38/5/art/opuscula_math_3828.pdfframeKrein spaceblock operator matrixspectrum |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Juan Giribet Matthias Langer Leslie Leben Alejandra Maestripieri Francisco Martínez Pería Carsten Trunk |
spellingShingle |
Juan Giribet Matthias Langer Leslie Leben Alejandra Maestripieri Francisco Martínez Pería Carsten Trunk Spectrum of J-frame operators Opuscula Mathematica frame Krein space block operator matrix spectrum |
author_facet |
Juan Giribet Matthias Langer Leslie Leben Alejandra Maestripieri Francisco Martínez Pería Carsten Trunk |
author_sort |
Juan Giribet |
title |
Spectrum of J-frame operators |
title_short |
Spectrum of J-frame operators |
title_full |
Spectrum of J-frame operators |
title_fullStr |
Spectrum of J-frame operators |
title_full_unstemmed |
Spectrum of J-frame operators |
title_sort |
spectrum of j-frame operators |
publisher |
AGH Univeristy of Science and Technology Press |
series |
Opuscula Mathematica |
issn |
1232-9274 |
publishDate |
2018-01-01 |
description |
A \(J\)-frame is a frame \(\mathcal{F}\) for a Krein space \((\mathcal{H},[\cdot,\cdot ])\) which is compatible with the indefinite inner product \([\cdot,\cdot ]\) in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in \(\mathcal{H}\). With every \(J\)-frame the so-called \(J\)-frame operator is associated, which is a self-adjoint operator in the Krein space \(\mathcal{H}\). The \(J\)-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of \(J\)-frame operators in a Krein space by a \(2\times 2\) block operator representation. The \(J\)-frame bounds of \(\mathcal{F}\) are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the \(2\times 2\) block representation. Moreover, this \(2\times 2\) block representation is utilized to obtain enclosures for the spectrum of \(J\)-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all \(J\)-frames associated with a given \(J\)-frame operator. |
topic |
frame Krein space block operator matrix spectrum |
url |
http://www.opuscula.agh.edu.pl/vol38/5/art/opuscula_math_3828.pdf |
work_keys_str_mv |
AT juangiribet spectrumofjframeoperators AT matthiaslanger spectrumofjframeoperators AT leslieleben spectrumofjframeoperators AT alejandramaestripieri spectrumofjframeoperators AT franciscomartinezperia spectrumofjframeoperators AT carstentrunk spectrumofjframeoperators |
_version_ |
1725560029412589568 |