Spectrum of J-frame operators

A \(J\)-frame is a frame \(\mathcal{F}\) for a Krein space \((\mathcal{H},[\cdot,\cdot ])\) which is compatible with the indefinite inner product \([\cdot,\cdot ]\) in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in \(\mathcal{H}\)...

Full description

Bibliographic Details
Main Authors: Juan Giribet, Matthias Langer, Leslie Leben, Alejandra Maestripieri, Francisco Martínez Pería, Carsten Trunk
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2018-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol38/5/art/opuscula_math_3828.pdf
id doaj-a1ecd68ab3e24f13b2bcd76c3231396b
record_format Article
spelling doaj-a1ecd68ab3e24f13b2bcd76c3231396b2020-11-24T23:24:34ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742018-01-01385623649https://doi.org/10.7494/OpMath.2018.38.5.6233828Spectrum of J-frame operatorsJuan Giribet0Matthias Langer1Leslie Leben2Alejandra Maestripieri3Francisco Martínez Pería4Carsten Trunk5Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, (1063) Buenos Aires, ArgentinaUniversity of Strathclyde, Department of Mathematics and Statistics, 26 Richmond Street, Glasgow G1 1XH, United KingdomTechnische Universität Ilmenau, Institut für Mathematik, Postfach 100565, D-98684 Ilmenau, GermanyFacultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850, (1063) Buenos Aires, ArgentinaCentro de Matemática de La Plata (CeMaLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 172, (1900) La Plata, ArgentinaInstituto Argentino de Matemática "Alberto P. Calderón" (CONICET), Saavedra 15, Piso 3, (1083) Buenos Aires, ArgentinaA \(J\)-frame is a frame \(\mathcal{F}\) for a Krein space \((\mathcal{H},[\cdot,\cdot ])\) which is compatible with the indefinite inner product \([\cdot,\cdot ]\) in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in \(\mathcal{H}\). With every \(J\)-frame the so-called \(J\)-frame operator is associated, which is a self-adjoint operator in the Krein space \(\mathcal{H}\). The \(J\)-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of \(J\)-frame operators in a Krein space by a \(2\times 2\) block operator representation. The \(J\)-frame bounds of \(\mathcal{F}\) are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the \(2\times 2\) block representation. Moreover, this \(2\times 2\) block representation is utilized to obtain enclosures for the spectrum of \(J\)-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all \(J\)-frames associated with a given \(J\)-frame operator.http://www.opuscula.agh.edu.pl/vol38/5/art/opuscula_math_3828.pdfframeKrein spaceblock operator matrixspectrum
collection DOAJ
language English
format Article
sources DOAJ
author Juan Giribet
Matthias Langer
Leslie Leben
Alejandra Maestripieri
Francisco Martínez Pería
Carsten Trunk
spellingShingle Juan Giribet
Matthias Langer
Leslie Leben
Alejandra Maestripieri
Francisco Martínez Pería
Carsten Trunk
Spectrum of J-frame operators
Opuscula Mathematica
frame
Krein space
block operator matrix
spectrum
author_facet Juan Giribet
Matthias Langer
Leslie Leben
Alejandra Maestripieri
Francisco Martínez Pería
Carsten Trunk
author_sort Juan Giribet
title Spectrum of J-frame operators
title_short Spectrum of J-frame operators
title_full Spectrum of J-frame operators
title_fullStr Spectrum of J-frame operators
title_full_unstemmed Spectrum of J-frame operators
title_sort spectrum of j-frame operators
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2018-01-01
description A \(J\)-frame is a frame \(\mathcal{F}\) for a Krein space \((\mathcal{H},[\cdot,\cdot ])\) which is compatible with the indefinite inner product \([\cdot,\cdot ]\) in the sense that it induces an indefinite reconstruction formula that resembles those produced by orthonormal bases in \(\mathcal{H}\). With every \(J\)-frame the so-called \(J\)-frame operator is associated, which is a self-adjoint operator in the Krein space \(\mathcal{H}\). The \(J\)-frame operator plays an essential role in the indefinite reconstruction formula. In this paper we characterize the class of \(J\)-frame operators in a Krein space by a \(2\times 2\) block operator representation. The \(J\)-frame bounds of \(\mathcal{F}\) are then recovered as the suprema and infima of the numerical ranges of some uniformly positive operators which are build from the entries of the \(2\times 2\) block representation. Moreover, this \(2\times 2\) block representation is utilized to obtain enclosures for the spectrum of \(J\)-frame operators, which finally leads to the construction of a square root. This square root allows a complete description of all \(J\)-frames associated with a given \(J\)-frame operator.
topic frame
Krein space
block operator matrix
spectrum
url http://www.opuscula.agh.edu.pl/vol38/5/art/opuscula_math_3828.pdf
work_keys_str_mv AT juangiribet spectrumofjframeoperators
AT matthiaslanger spectrumofjframeoperators
AT leslieleben spectrumofjframeoperators
AT alejandramaestripieri spectrumofjframeoperators
AT franciscomartinezperia spectrumofjframeoperators
AT carstentrunk spectrumofjframeoperators
_version_ 1725560029412589568