Computing the numerical range of Krein space operators

Consider the Hilbert space (H,〈• , •〉) equipped with the indefinite inner product[u,v]=v*J u,u,v∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical range WJ(T) of an operator T acting on H is the set of all the values attained by the quadratic form [Tu,u], wi...

Full description

Bibliographic Details
Main Authors: Bebiano Natalia, da Providência J., Nata A., da Providência J.P.
Format: Article
Language:English
Published: De Gruyter 2014-11-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2015-0014
id doaj-a1ea6a4a34ce4672a6270c2f8483c26b
record_format Article
spelling doaj-a1ea6a4a34ce4672a6270c2f8483c26b2021-09-06T19:20:07ZengDe GruyterOpen Mathematics2391-54552014-11-0113110.1515/math-2015-0014math-2015-0014Computing the numerical range of Krein space operatorsBebiano Natalia0da Providência J.1Nata A.2da Providência J.P.3CMUC, University of Coimbra, Department of Mathematics, P 3001-454 Coimbra, PortugalUniversity of Coimbra, Department of Physics, P 3004-516 Coimbra, PortugalCMUC, Polytechnic Institute of Tomar, Department of Mathematics, P 2300-313 Tomar, PortugalDepatamento de Física, Univ. of Beira Interior, P-6201-001 Covilhã, PortugalConsider the Hilbert space (H,〈• , •〉) equipped with the indefinite inner product[u,v]=v*J u,u,v∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical range WJ(T) of an operator T acting on H is the set of all the values attained by the quadratic form [Tu,u], with u ∈H satisfying [u,u]=± 1. We develop, implement and test an alternative algorithm to compute WJ(T) in the finite dimensional case, constructing 2 by 2 matrix compressions of T and their easily determined elliptical and hyperbolical numerical ranges. The numerical results reported here indicate that this method is very efficient, since it is faster and more accurate than either of the existing algorithms. Further, it may yield easy solutions for the inverse indefinite numerical range problem. Our algorithm uses an idea of Marcus and Pesce from 1987 for generating Hilbert space numerical ranges of matrices of size n.https://doi.org/10.1515/math-2015-0014indefinite inner product krein space numerical range compression
collection DOAJ
language English
format Article
sources DOAJ
author Bebiano Natalia
da Providência J.
Nata A.
da Providência J.P.
spellingShingle Bebiano Natalia
da Providência J.
Nata A.
da Providência J.P.
Computing the numerical range of Krein space operators
Open Mathematics
indefinite inner product
krein space
numerical range
compression
author_facet Bebiano Natalia
da Providência J.
Nata A.
da Providência J.P.
author_sort Bebiano Natalia
title Computing the numerical range of Krein space operators
title_short Computing the numerical range of Krein space operators
title_full Computing the numerical range of Krein space operators
title_fullStr Computing the numerical range of Krein space operators
title_full_unstemmed Computing the numerical range of Krein space operators
title_sort computing the numerical range of krein space operators
publisher De Gruyter
series Open Mathematics
issn 2391-5455
publishDate 2014-11-01
description Consider the Hilbert space (H,〈• , •〉) equipped with the indefinite inner product[u,v]=v*J u,u,v∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical range WJ(T) of an operator T acting on H is the set of all the values attained by the quadratic form [Tu,u], with u ∈H satisfying [u,u]=± 1. We develop, implement and test an alternative algorithm to compute WJ(T) in the finite dimensional case, constructing 2 by 2 matrix compressions of T and their easily determined elliptical and hyperbolical numerical ranges. The numerical results reported here indicate that this method is very efficient, since it is faster and more accurate than either of the existing algorithms. Further, it may yield easy solutions for the inverse indefinite numerical range problem. Our algorithm uses an idea of Marcus and Pesce from 1987 for generating Hilbert space numerical ranges of matrices of size n.
topic indefinite inner product
krein space
numerical range
compression
url https://doi.org/10.1515/math-2015-0014
work_keys_str_mv AT bebianonatalia computingthenumericalrangeofkreinspaceoperators
AT daprovidenciaj computingthenumericalrangeofkreinspaceoperators
AT nataa computingthenumericalrangeofkreinspaceoperators
AT daprovidenciajp computingthenumericalrangeofkreinspaceoperators
_version_ 1717777310985224192