Possibilities for Reducing CO and TOC Emissions in Thermal Waste Treatment Plants: A Case Study
The technology of waste-management thermal processing may pose a threat to the natural environment through the emission of harmful substances, such as CO, NOx, SO<sub>2</sub>, HCl, HF, total organic carbon (TOC) and dust, as well as dioxins and furans. Due to the advantages of thermal wa...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/14/10/2901 |
id |
doaj-a1e9ef39d50543959208075a295c85b4 |
---|---|
record_format |
Article |
spelling |
doaj-a1e9ef39d50543959208075a295c85b42021-06-01T00:18:25ZengMDPI AGEnergies1996-10732021-05-01142901290110.3390/en14102901Possibilities for Reducing CO and TOC Emissions in Thermal Waste Treatment Plants: A Case StudyJanusz Bujak0Piotr Sitarz1Rafał Pasela2Faculty of Environmental Engineering, University of Science and Technology in Bydgoszcz, Kaliskiego 7, 85-796 Bydgoszcz, PolandPPM PROMONT Bujak Sp. z o.o.—Sp. K., Bydgoszcz, Jagiellońska 35, 85-097 Bydgoszcz, PolandFaculty of Environmental Engineering, University of Science and Technology in Bydgoszcz, Kaliskiego 7, 85-796 Bydgoszcz, PolandThe technology of waste-management thermal processing may pose a threat to the natural environment through the emission of harmful substances, such as CO, NOx, SO<sub>2</sub>, HCl, HF, total organic carbon (TOC) and dust, as well as dioxins and furans. Due to the advantages of thermal waste treatment, including the small volume of solid residue produced and possible thermal energy recovery, thermal waste treatment is widely applied. Continuous research is necessary to develop methods for reducing the risk of harmful substances being produced and methods for the effective removal of pollutants resulting from flue gases. This paper presents an analysis of the results and conditions of the experimental redesign of a thermal industrial waste (polypropylene) treatment plant. The purpose of the redesign was to improve the quality of gasification and afterburning processes taking place in the combustion and afterburner chambers (through the installation of an additional section), thus resulting in a reduction in the concentrations of CO and total organic carbon (TOC) in flue gases. The research concerned a facility implementing the combustion process on an industrial scale. The experiment led to a reduction in the average concentrations of carbon monoxide from 16.58 mg/m<sup>3</sup> to 3.23 mg/m<sup>3</sup> and of volatile organic compounds from 2.20 mg/m<sup>3</sup> to 0.99 mg/m<sup>3</sup>. At the same time, no deterioration was observed in any of the remaining technological parameters of the plant, such as waste combustion performance and the energy efficiency of the thermal energy recovery system.https://www.mdpi.com/1996-1073/14/10/2901waste thermal treatmentflue gas treatmentair pollutionrotary kiln |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Janusz Bujak Piotr Sitarz Rafał Pasela |
spellingShingle |
Janusz Bujak Piotr Sitarz Rafał Pasela Possibilities for Reducing CO and TOC Emissions in Thermal Waste Treatment Plants: A Case Study Energies waste thermal treatment flue gas treatment air pollution rotary kiln |
author_facet |
Janusz Bujak Piotr Sitarz Rafał Pasela |
author_sort |
Janusz Bujak |
title |
Possibilities for Reducing CO and TOC Emissions in Thermal Waste Treatment Plants: A Case Study |
title_short |
Possibilities for Reducing CO and TOC Emissions in Thermal Waste Treatment Plants: A Case Study |
title_full |
Possibilities for Reducing CO and TOC Emissions in Thermal Waste Treatment Plants: A Case Study |
title_fullStr |
Possibilities for Reducing CO and TOC Emissions in Thermal Waste Treatment Plants: A Case Study |
title_full_unstemmed |
Possibilities for Reducing CO and TOC Emissions in Thermal Waste Treatment Plants: A Case Study |
title_sort |
possibilities for reducing co and toc emissions in thermal waste treatment plants: a case study |
publisher |
MDPI AG |
series |
Energies |
issn |
1996-1073 |
publishDate |
2021-05-01 |
description |
The technology of waste-management thermal processing may pose a threat to the natural environment through the emission of harmful substances, such as CO, NOx, SO<sub>2</sub>, HCl, HF, total organic carbon (TOC) and dust, as well as dioxins and furans. Due to the advantages of thermal waste treatment, including the small volume of solid residue produced and possible thermal energy recovery, thermal waste treatment is widely applied. Continuous research is necessary to develop methods for reducing the risk of harmful substances being produced and methods for the effective removal of pollutants resulting from flue gases. This paper presents an analysis of the results and conditions of the experimental redesign of a thermal industrial waste (polypropylene) treatment plant. The purpose of the redesign was to improve the quality of gasification and afterburning processes taking place in the combustion and afterburner chambers (through the installation of an additional section), thus resulting in a reduction in the concentrations of CO and total organic carbon (TOC) in flue gases. The research concerned a facility implementing the combustion process on an industrial scale. The experiment led to a reduction in the average concentrations of carbon monoxide from 16.58 mg/m<sup>3</sup> to 3.23 mg/m<sup>3</sup> and of volatile organic compounds from 2.20 mg/m<sup>3</sup> to 0.99 mg/m<sup>3</sup>. At the same time, no deterioration was observed in any of the remaining technological parameters of the plant, such as waste combustion performance and the energy efficiency of the thermal energy recovery system. |
topic |
waste thermal treatment flue gas treatment air pollution rotary kiln |
url |
https://www.mdpi.com/1996-1073/14/10/2901 |
work_keys_str_mv |
AT januszbujak possibilitiesforreducingcoandtocemissionsinthermalwastetreatmentplantsacasestudy AT piotrsitarz possibilitiesforreducingcoandtocemissionsinthermalwastetreatmentplantsacasestudy AT rafałpasela possibilitiesforreducingcoandtocemissionsinthermalwastetreatmentplantsacasestudy |
_version_ |
1721415249057284096 |