LncRNA GATA6-AS inhibits cancer cell proliferation and promotes cancer cell apoptosis in cervical cancer by down-regulating miR-205

Abstract Background Dysregulated endothelial cell growth is involved in many types of human cancer, including cervical cancer. LncRNA GATA6-AS was reported to regulate endothelial cell growth, suggesting it might involve in cervical cancer. Our study was carried out to explore the involvement of GAT...

Full description

Bibliographic Details
Main Authors: Xiaoying Zhao, Huzhong Zheng, Jun Chen
Format: Article
Language:English
Published: BMC 2020-11-01
Series:BMC Women's Health
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12905-020-01082-7
Description
Summary:Abstract Background Dysregulated endothelial cell growth is involved in many types of human cancer, including cervical cancer. LncRNA GATA6-AS was reported to regulate endothelial cell growth, suggesting it might involve in cervical cancer. Our study was carried out to explore the involvement of GATA6-AS in cervical squamous cell carcinoma (CSCC), a subtype of cervical cancer. Methods To explore the expression of GATA6-AS, RT-qPCR was performed to detect GATA6-AS in plasma of 65 CSCC patients and 58 healthy females. To detect the expression of GATA6-AS, total RNAs were extracted. Results We found that plasma GATA6-AS expression was down-regulated in CSCC patients than that in healthy females, and HPV infection did not significantly affect the plasma expression of GATA6-AS. Moreover, we found that plasma GATA6-AS showed diagnostic values for CSCC by performing ROC curve analysis. The expression of miR-205 in plasma was also found to be up-regulated in CSCC patients than that in healthy females and inversely correlated with the expression of GATA6-AS in CSCC patients. Furthermore, over-expression of miR-205 did not significantly affect the expression of GATA6-AS in CSCC cells, while over-expression of GATA6-AS down-regulated miR-205 expression. In addition, GATA6-AS over-expression inhibited CSCC cell proliferation and promoted CSCC cell apoptosis, while miR-205 over-expression played opposite roles and attenuated the effects of GATA6-AS over-expression on CSCC cells. Conclusion Taken together, these results suggest that GATA6-AS may inhibit cell proliferation and promote cell apoptosis in CSCC by down-regulating miR-205.
ISSN:1472-6874