The Extinction of a Non-Autonomous Allelopathic Phytoplankton Model with Nonlinear Inter-Inhibition Terms and Feedback Controls

A non-autonomous allelopathic phytoplankton model with nonlinear inter-inhibition terms and feedback controls is studied in this paper. Based on the comparison theorem of differential equation, some sufficient conditions for the permanence of the system are obtained. We study the extinction of one o...

Full description

Bibliographic Details
Main Authors: Liang Zhao, Fengde Chen, Saixi Song, Guizhen Xuan
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/2/173
Description
Summary:A non-autonomous allelopathic phytoplankton model with nonlinear inter-inhibition terms and feedback controls is studied in this paper. Based on the comparison theorem of differential equation, some sufficient conditions for the permanence of the system are obtained. We study the extinction of one of the species by using some suitable Lyapunov type extinction function. Our analyses extend those of Xie et al. (Extinction of a two species competitive system with nonlinear inter-inhibition terms and one toxin producing phytoplankton. Advances in Difference Equations, 2016, 2016, 258) and show that the feedback controls and toxic substances have no effect on the permanence of the system but play a crucial role on the extinction of the system. Some known results are extended.
ISSN:2227-7390