Evaluation and Application of Urban Traffic Signal Optimizing Control Strategy Based on Reinforcement Learning

Reinforcement learning method has a self-learning ability in complex multidimensional space because it does not need accurate mathematical model and due to the low requirement for prior knowledge of the environment. The single intersection, arterial lines, and regional road network of a group of mul...

Full description

Bibliographic Details
Main Authors: Yizhe Wang, Xiaoguang Yang, Yangdong Liu, Hailun Liang
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Journal of Advanced Transportation
Online Access:http://dx.doi.org/10.1155/2018/3631489
Description
Summary:Reinforcement learning method has a self-learning ability in complex multidimensional space because it does not need accurate mathematical model and due to the low requirement for prior knowledge of the environment. The single intersection, arterial lines, and regional road network of a group of multiple intersections are taken as the research object on the paper. Based on the three key parameters of cycle, arterial coordination offset, and green split, a set of hierarchical control algorithms based on reinforcement learning is constructed to optimize and improve the current signal timing scheme. However, the traffic signal optimization strategy based on reinforcement learning is suitable for complex traffic environments (high flows and multiple intersections), and the effects of which are better than the current optimization methods in the conditions of high flows in single intersections, arteries, and regional multi-intersection. In a word, the problem of insufficient traffic signal control capability is studied, and the hierarchical control algorithm based on reinforcement learning is applied to traffic signal control, so as to provide new ideas and methods for traffic signal control theory.
ISSN:0197-6729
2042-3195