Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion

Oscillating water column (OWC) axial impulse turbines permit the conversion of wave energy into electrical power. Unlike other hydropower units with a mature and well established technology, such turbines have been recently developed, there are still few prototypes operating and therefore there is a...

Full description

Bibliographic Details
Main Authors: Yongyao Luo, Alexandre Presas, Zhengwei Wang
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/12/5/939
Description
Summary:Oscillating water column (OWC) axial impulse turbines permit the conversion of wave energy into electrical power. Unlike other hydropower units with a mature and well established technology, such turbines have been recently developed, there are still few prototypes operating and therefore there is a large space for optimizing its design. Many recent studies focus on the improvement of the efficiency and transient characteristics by means of experimentation and also simulation techniques. In the present paper we use a 3D numerical simulation model (computational fluid dynamics model with ANSYS-Fluent 18) to analyze the influence of different geometrical parameters on the efficiency of the turbine, which have been less discussed yet. A reference configuration case has been used to validate our simulation model by comparing it with previous experimental results. Then, parametric variations in the guide vane number and type, gaps between the rotating and stationary part and hub to tip ratio have been introduced in the model to discuss the influence of these effects. It is found that some of these parameters have an important influence on the efficiency of the turbine and therefore, the results presented in this paper can help to optimize future designs of OWC impulse turbines.
ISSN:1996-1073