Numerical Study of the Dynamic Compaction Process considering the Phenomenon of Particle Breakage

Dynamic compaction (DC) is commonly used to strengthen the coarse grained soil foundation, where particle breakage of coarse soils is unavoidable under high-energy impacts. In this paper, a novel method of modeling DC progress was developed, which can realize particle breakage by impact stress. A pa...

Full description

Bibliographic Details
Main Authors: Xi Li, Jing Li, Xinyan Ma, Jidong Teng, Sheng Zhang
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2018/1838370
Description
Summary:Dynamic compaction (DC) is commonly used to strengthen the coarse grained soil foundation, where particle breakage of coarse soils is unavoidable under high-energy impacts. In this paper, a novel method of modeling DC progress was developed, which can realize particle breakage by impact stress. A particle failure criterion of critical stress is first employed. The “population balance” between particles before and after crushing is guaranteed by the overlapping method. The performance of the DC model is successfully validated against literature data. A series of DC tests were then carried out. The effect of particle breakage on key parameters of DC including crater depth and impact stress was discussed. Besides, it is observed that the relationship between breakage amount and tamping times can be expressed by a logarithmic curve. The present method will contribute to a better understanding of DC and benefit further research on the macro-micro mechanism of DC.
ISSN:1687-8086
1687-8094